Zhiwei Yu, Bin Yang, Simon X. Yang, and Zhendong Dai


  1. [1] K. Autumn, Y.A. Liang, S.T. Hsieh, et al., Adhesive force of a single gecko foot-hair, Nature, 405, 2000, 681–685.
  2. [2] K. Autumn and A.M. Peattie, Mechanisms of adhesion in geckos, Integrative and Comparative Biology, 42, 2002, 1081– 1090.
  3. [3] K. Autumn, How gecko toes stick: The powerful, fantastic adhesive used by geckos is made of nanoscale hairs that engage tiny forces, inspiring envy among human imitators, American Scientist, 94, 2006, 124–132.
  4. [4] K. Autumn, M. Sitti, A. Peattie, et al., Evidence for van der Waals adhesion in gecko setae, Proceedings of the National Academy of Sciences of the United States of America, 99(19), 2002, 12252–12256.
  5. [5] K. Autumn, S.T. Hsieh, D.M. Dudek, et al., Dynamics of geckos running vertically, Journal of Experimental Biology, 209(2), 2006, 260–272.
  6. [6] Z. Dai, Z. Wang, and A. Ji, Dynamics of gecko locomotion: A force-measuring array to measure 3D reaction forces, Journal of Experimental Biology, 214(5), 2011, 703–708.
  7. [7] Z. Wang, W. Gu, Q. Wu, and Z. Dai, Morphology and reaction force of toes of geckos freely moving on ceilings and walls, Science China Technological Sciences, 53(6), 2010, 1688–1693.
  8. [8] Z. Wang, Z. Dai, A. Ji, et al., Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates, Bioinspiration & Biomimetics, 10(1), 2015, 1–14.
  9. [9] M. Sitti and R.S. Fearing, Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots, Proc. IEEE Int. Conf. on Robotics & Automation, Taipei, Taiwan, 2003, 1164–1170.
  10. [10] B. Aksak, M.P. Murphy, and M. Sitti, Gecko inspired microfibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces, IEEE Int. Conf. Robotics and Automation, Pasadena, CA, 2008, 3058–3063.
  11. [11] S. Das, N. Cadirov, S. Chary, Y. Kaufman, et al., Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces, Journal of the Royal Society Interface, 12(104), 2015, 1–9.
  12. [12] K.A. Daltorio, S.N. Gorb, A. Peressadko, A.D. Horchler, et al., A robot that climbs walls using micro-structured polymer feet, in M.O. Tokhi (ed.), Climbing and Walking Robots, (Berlin Heidelberg: Springer-Verlag, 2006), 131–138.
  13. [13] X. Wu, D. Wang, A. Zhao, D. Li, et al., A wall-climbing robot with biomimetic adhesive pedrail, in D. Zhang (ed.), Advanced Mechatronics and MEMS Devices, 9 (New York: Springer-Verlag, 2013), 179–191.
  14. [14] T. Seo and M. Sitti, Tank-like module-based climbing robot using passive compliant joints, IEEE/ASME Transactions on Mechatronics, 18(1), 2013, 397–408.
  15. [15] K.H. Koh, M. Sreekumar, and S.G. Ponnambalam, Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot, Mechatronics, 35, 2016, 122–135.
  16. [16] C. Menon, M. Murphy, and M. Sitti, Gecko inspired surface climbing robots, Proc. IEEE Int. Conf. Robotics and Biomimetics, Shenyang, China, 2004, 431–436.
  17. [17] C. Menon and M. Sitti, A biomimetic climbing robot based on the gecko, Journal of Bionic Engineering, 3(3), 2006, 115–125.
  18. [18] O. Unver, A. Uneri, A. Aydemir, and M. Sitti, Geckobot: A gecko inspired climbing robot using elastomer adhesives, Proc. IEEE Int. Conf. Robotics and Automation, Orlando, FL, 2006, 2329–2335.
  19. [19] B. He, Z. Wang, M. Li, et al., Wet adhesion inspired bionic climbing robot, IEEE/ASME Transactions on Mechatronics, 19(1), 2014, 312–320.
  20. [20] R. Chen, R. Liu, J. Chen, and J. Zhang, A gecko inspired wall-climbing robot based on electrostatic adhesion mechanism, Proc. IEEE Int. Conf. Robotics and Biomimetics, Shenzhen, China, 2013, 396–401.
  21. [21] P. Birkmeyer, A.G. Gillies, and R.S. Fearing, Dynamic climbing of near-vertical smooth surfaces, IEEE/RSJ Int. Conf. 430 Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, 286–292.
  22. [22] R. Yue, J. Xiao, K. Li, et al., Design and performance analysis of retractable-claw wheels for field robots, International Journal of Robotics and Automation, 25(3), 2010, 250–258.
  23. [23] M.A.K. Jaradat, S.M. Ashour, A.A. Matalkh, et al., Biologically inspired design of a glass climbing robot for remote services, International Journal of Robotics and Automation, 25(2), 2010, 132–141.
  24. [24] M. Henrey, J. Krahn, A. Ahmed, K. Wormnes, et. al., Climbing with structured dry adhesives: sticky robots for scaling smooth vertical surfaces, the 12th Symposium on Advanced Space Technologies in Robotics and Automation, Sydney, Australia, 2013, 1–6.
  25. [25] W. Wang, S. Wu, P. Zhu, and R. Liu, Analysis on the dynamic climbing forces of a gecko inspired, climbing robot based on GPL model, IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Hamburg, Germany, 2015, 3314–3319.
  26. [26] S. Kim, M. Spenko, S. Trujillo, et al., Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot, IEEE Int. Conf. Robotics and Automation, Roma, Italy, 2007, 1268–1273.
  27. [27] S. Nansai and R.E. Mohan, A survey of wall climbing robots: Recent advances and challenges, Robotics, 5(3), 2016, 1–14.
  28. [28] A. Zhu and S.X. Yang, Tracking control of a mobile robot with stability analysis, International Journal of Robotics and Automation, 28(4), 2013, 340–348.
  29. [29] S.X. Yang, A. Zhu, M.Q.H. Meng, et al., A bioinspired neurodynamics-based approach to tracking control of mobile robots, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3211–3220.
  30. [30] S. Gorb, M. Varenberg, A. Peressadko, and J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure, Journal of the Royal Society Interface, 4(13), 2007, 271–275.
  31. [31] A.E. Kovalev, M. Varenberg, and S.N. Gorb, Wet versus dry adhesion of biomimetic mushroom-shaped microstructures, Soft Matter, 8(29), 2012, 7560–7566.
  32. [32] L. Heepe and S.N. Gorb, Biologically inspired mushroomshaped adhesive microstructures, Annual Review of Materials Research, 44, 2014, 173–203.

Important Links:

Go Back