Amine M. Mamou and Nadia Saadia


  1. [1] D.J. Reinkensmeyer, J.L. Emken, and S.C. Cramer, Robotics, motor learning, and neurologic recovery, Annual Review of Biomedical Engineering, 6, 2004, 497–525.
  2. [2] H. Schmidt, C. Werner, R. Bernhardt, S. Hesse, et al., Gait rehabilitation machines based on programmable footplates, Journal of Neuroengineering and Rehabilitation, 4(1), 2007, 1.
  3. [3] E. Akdo˘gan and M.A. Adli, The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics, 21(3), 2011, 509–522.
  4. [4] C. Li, Z. Rusák, Y. Hou, C. Young, and L. Ji, Upper limb motor rehabilitation integrated with video games focusing on training fingers’ fine movements, International Journal of Robotics and Automation, 29(4), 2014, 359–368.
  5. [5] I. D´ıaz, J.J. Gil, and E. Sánchez, Lower-limb robotic rehabilitation: Literature review and challenges, Journal of Robotics, 2011.
  6. [6] Y.T. Rad and V.A. Azar, Design and computer simulation of a software controller for a hardware robot with 2 degrees of freedom for lower limb physiotherapy, Applied Mathematics in Engineering, Management and Technology, Special Issue in Management and Technology, 2, 2014, 371–381.
  7. [7] H. Herr, Exoskeletons and orthoses: Classification, design challenges and future directions, Journal of Neuroengineering and Rehabilitation, 6(1), 2009, 1.
  8. [8] Y. Allemand, Y. Stauffer, R. Clavel, and R. Brodard, Design of a new lower extremity orthosis for overground gait training with the walktrainer, IEEE Conf. Rehabilitation Robotics ICORR, Kyoto, Japan, 2009, 550–555.
  9. [9] M.A. Mamou and N. Saadia, Robotic rehabilitation of lower limbs: Reproduction of human physiological movements, Advances in swarm and computational intelligence (Cham: Springer, 2015), 171–179.
  10. [10] M. Bouri, Y. Stauffer, C. Schmitt, Y. Allemand, et al., The walktrainer: A robotic system for walking rehabilitation, IEEE Conf. on Robotics and Biomimetics ROBIO, Beijing, China, 2006, 1616–1621.
  11. [11] H. Kawamoto and Y. Sankai, Power assist system Hal-3 for gait disorder person, ICCHP ’02 Proceedings of the 8th International Conference on Computers Helping People with Special Needs, Verlag, London, July 2002, 196–203.
  12. [12] K.H. Seo and J.J. Lee, The development of two mobile gait rehabilitation systems, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(2), 2009, 156–166.
  13. [13] G. Colombo, M. Joerg, R. Schreier, and V.Dietz, Treadmill training of paraplegic patients using a robotic orthosis, Journal of Rehabilitation Research and Development, 37(6), 2000, 693.
  14. [14] D.J. Reinkensmeyer, D. Aoyagi, J.L. Emken, and J.A. Galvez, Tools for understanding and optimizing robotic gait training, Journal of Rehabilitation Research and Development, 43(5), 2006, 657.
  15. [15] J.F. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp, et al., Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation, IEEE Transactions Neural Systems and Rehabilitation Engineering, 15(3), 2007, 379–386.
  16. [16] M. Pietrusinski, I. Cajigas, Y. Mizikacioglu, M. Goldsmith, et al., Gait rehabilitation therapy using robot generated force fields applied at the pelvis, IEEE Conf on Haptics Symposium, Waltham, Massachusetts, USA (Boston Area), March 2010, 401–407.
  17. [17] H. Yano, S. Tamefusa, N. Tanaka, H. Saitou, et al., Gait rehabilitation system for stair climbing and descending, IEEE Conf on Haptics Symposium, Waltham, Massachusetts, USA (Boston Area), March 2010, 393–400.
  18. [18] J. Yoon, B. Novandy, C.H. Yoon, and K.J. Park, A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains, IEEE/ASME Transactions Mechatronics, 15(2), 2010, 201–215.
  19. [19] K. Homma, O. Fukuda, J. Sugawara, Y. Nagata, et al., A wire-driven leg rehabilitation system: development of a 4-dof experimental system, IEEE/ASME International Conf. on Advanced Intelligent Mechatronics, AIM, Proceedings 2, Port Island, Japan, July 2003, 908–913.
  20. [20] M. Bouri, B.L. Gall, and R. Clavel, A new concept of parallel robot for rehabilitation and fitness: The Lambda, IEEE International Conf. on Robotics and Biomimetics, ROBIO, Guilin, China, December 2009, 2503–2508.
  21. [21] C. Schmitt and P. Métrailler, The Motion MakerTM: A rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation, International Workshop on Functional Electrical Stimulation, Vienna, No. LSRO2-CONF-2006-011, 117–120.
  22. [22] T. Kikuchi, K. Oda, and J. Furusho, Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch, Advanced Robotics, 24(5–6), 2010, 671–686.
  23. [23] J. Nikitczuk, B. Weinberg, P.K. Canavan, and C. Mavroidis, Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid, IEEE/ASME Transactions on Mechatronics, 15(6), 2010, 952– 960.
  24. [24] M. Girone, G. Burdea, M. Bouzit, V. Popescu, et al., A Stewart platform-based system for ankle telerehabilitation, Autonomous Robots, 10(2), 2001, 203–212.
  25. [25] P.R. Ouyang, W. Yue, and V. Pano, Hybrid PD sliding mode control for robotic manipulators, International Journal of Robotics and Automation, 29(4), 2014, 387–395.
  26. [26] D.C. Theodoridis, Y.S. Boutalis, and M.A. Christodoulou, A new adaptive neuro-fuzzy controller for trajectory tracking of robot manipulators, International Journal of Robotics and Automation, 26(1), 2011, 64.
  27. [27] K. Kherraz, M. Hamerlain, and N. Achour, Robust neurofuzzy sliding mode controller for a flexible robot manipulator, International Journal of Robotics and Automation, 30(1), 2015.
  28. [28] T. Mai, Y. Wang, and T. Ngo, Adaptive tracking control for robot manipulators using fuzzy wavelet neural networks, International Journal of Robotics and Automation, 30(1), 2015.
  29. [29] I.B. Kucukdemiral, Adaptive self-tuning control of robot manipulators with periodic disturbance estimation, International Journal of Robotics and Automation, 25(1), 2010.
  30. [30] X.Y. Wang and Y.J. Pi, Trajectory tracking control of a hydraulic parallel robot manipulator with lumped disturbance observer, International Journal of Robotics and Automation, 28(2), 2013, 103–111.
  31. [31] L.C. Kwek, A.W. Tan, and E.K. Wong, Generalized predictive control on a robotic manipulator system, International Journal of Robotics and Automation, 28(3), 2013, 277–283.
  32. [32] M.A. Mamou and N. Saadia, Neural networks controller of a lower limbs robotic rehabilitation chair, Conf. on Biodevices, France, Angers, 2014, 65–71.
  33. [33] L. Merrouche, Conception d’orth`eses fonctionnelles pour les paraplégiques, Doctoral Dissertation, Université des Sciences et de la Technologie Houari-Boumédi`ene, Alger, 2011.
  34. [34] M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, Vol. 3 (New York, NY: John Wiley and Sons, 2006).
  35. [35] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control sensing, vision, and intelligence (New Delhi: Tata McGrawHill Education, 1987).
  36. [36] W. Khalil, Dynamic modeling of robots using recursive Newton–Euler techniques, Conf. on ICINCO, Portugal, June 2010.
  37. [37] F. Boyer, W. Khalil, M. Benosman, and G.Le Vey, Modeling and control of flexible robots, Conf. on Modeling, Performance Analysis and Control of Robot Manipulators, 2007, 337–394.
  38. [38] R.N. Jazar, Theory of applied robotics: Kinematics, dynamics, and control, 2nd ed. (Berlin: Springer Science and Business Media, 2010).
  39. [39] W. Khalil and E. Dombre, Modeling, identification and control of robots (Oxford: Butterworth-Heinemann, 2004).
  40. [40] K.J. ˚Aström, and T. H¨agglund, PID controllers: Theory, design, and tuning, 2nd ed. (Research Triangle Park, NC: Instrument Society of America, 1998).
  41. [41] M.I. Lourakis, A brief description of the Levenberg-Marquardt algorithm implemented by Levmar, Foundation of Research and Technology, 4, 2005, 1–6.
  42. [42] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11(2), 1963, 431–441.
  43. [43] M.T. Hagan and M.B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5(6), 1994, 989–993.
  44. [44] H. Yu and B.M. Wilamowski, Levenberg–Marquardt training, Industrial Electronics Handbook, 5(12), 2011, 1–16.
  45. [45] S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, et al., OpenSim: Open-source software to create and analyze dynamic simulations of movement, IEEE Transactions on Biomedical Engineering, 54(11), 2007, 1940–1950.
  46. [46] L. Zaccarian and A.R. Teel, Modern anti-windup synthesis: Control augmentation for actuator saturation (Princeton, NJ: University Press, 2011).

Important Links:

Go Back