Mojgan Elmi, Heidar A. Talebi, and Mohammad B. Menhaj


  1. [1] Y. Sun and F. Meng, Reachable set estimation for a class ofnonlinear time-varying systems, Complexity, 2017, 2017, 1–6.
  2. [2] Y.-J. Liu, S. Lu, D. Li and S. Tong, Adaptive controllerdesign-based ABLF for a class of nonlinear time-varying stateconstraint systems, IEEE Transactions on Systems, Man, andCybernetics: Systems, 47(7), 2016, 1546–1553.
  3. [3] K.S. Tsakalis and P.A. Ioannou, A new indirect adaptivecontrol scheme for time-varying plants, Proceedings of the 27thIEEE Conference on Decision and Control, Austin, TX, USA,1988, 2419–2424.
  4. [4] K. Tsakalis and P. Ioannou, Adaptive control of linear time-varying plants, Automatica, 23(4), 1987, 459–468.
  5. [5] K.S. Tsakalis and P.A. Ioannou, Adaptive control of linear time-varying plants: A new model reference controller structure,IEEE Transactions on Automatic Control, 34(10), 1989, 1038–1046.
  6. [6] K. Abidi and J.-X. Xu, A discrete-time periodic adaptivecontrol approach for time-varying parameters with knownperiodicity, IEEE Transactions on Automatic Control, 53(2),2008, 575–581.
  7. [7] P.R. Pagilla, B. Yu and K.L. Pau, Adaptive control oftime-varying mechanical systems: Analysis and experiments,IEEE/ASME Transactions on Mechatronics, 5(4), 2000, 410–418.
  8. [8] M. Elmi, H.A. Talebi and M.B. Menhaj, Robust adaptivedynamic surface control of nonlinear time-varying systems instrict-feedback form, International Journal of Control, Au-tomation and Systems, 17(6), 2019, 1432–1444.
  9. [9] N.S. Nise, Control system engineering, (New York: John Wiley& Sons, 2011).
  10. [10] C.-T. Chen, Linear system theory and design (Oxford: OxfordUniversity Press, 1998).
  11. [11] I. Mizumoto, R. Michino, Y. Tao, and Z. Iwai, Robust adaptivetracking control for time-varying nonlinear systems with higherorder relative degree, 42nd IEEE International Conference onDecision and Control (IEEE Cat. No. 03CH37475), Maui, HI,USA, 2003, 4303–4308.
  12. [12] I. Kanellakopoulos, P. Kokotovic, and A. Morse, Adaptiveoutput-feedback control of a class of nonlinear systems, Pro-ceedings of the 30th IEEE Conference on Decision and Control,Brighton, UK, 1991, 1082–1087.
  13. [13] M. Krsti´c, I. Kanellakopoulos, and P. Kokotovi´c, Adaptivenonlinear control without overparametrization, Systems &Control Letters, 19(3), 1992, 177–185.
  14. [14] M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinearand adaptive control design, (New York: Wiley, 1995).
  15. [15] M. Song, Y. Lin, and R. Huang, Robust adaptive dynamicsurface control for linear time-varying systems, InternationalJournal of Adaptive Control and Signal Processing, 28(10),2014, 932–948.
  16. [16] S. Tong, Y. Li, and P. Shi, Fuzzy adaptive backstepping robustcontrol for SISO nonlinear system with dynamic uncertainties,Information Sciences, 179(9), 2009, 1319–1332.
  17. [17] S. Tong, T. Wang, Y. Li, and B. Chen, A combined backstep-ping and stochastic small-gain approach to robust adaptivefuzzy output feedback control, IEEE Transactions on FuzzySystems, 21(2), 2012, 314–327.
  18. [18] S. Tong and Y. Li, Adaptive fuzzy output feedback control forswitched nonlinear systems with unmodeled dynamics, IEEETransactions on Cybernetics, 47(2), 2016, 295–305.
  19. [19] D. Swaroop, J. Gerdes, P.P. Yip, and J.K. Hedrick, Dynamicsurface control of nonlinear systems, Proceedings of the 1997American Control Conference (Cat. No. 97CH36041), Albu-querque, NM, USA, 1997, 3028–3034.
  20. [20] D. Swaroop, J.K. Hedrick, P.P. Yip, and J.C. Gerdes, Dy-namic surface control for a class of nonlinear systems, IEEETransactions on Automatic Control, 45(10), 2000, 1893–1899.
  21. [21] G.-Q. Wu, S.-M. Song and J.-G. Sun, Adaptive dynamicsurface control for spacecraft terminal safe approach withinput saturation based on tracking differentiator, InternationalJournal of Control, Automation and Systems, 16(3), 2018,1129–1141.
  22. [22] L. Edalati, A.K. Sedigh, M.A. Shooredeli, and A. Moarefi-anpour, Adaptive fuzzy dynamic surface control of nonlinearsystems with input saturation and time-varying output con-straints, Mechanical Systems and Signal Processing, 100, 2018,311–329.
  23. [23] M. Lv, Y. Wang, S. Baldi, Z. Liu, and Z. Wang, A DSC methodfor strict-feedback nonlinear systems with possibly unboundedcontrol gain functions, Neurocomputing, 275, 2018, 1383–1392.
  24. [24] S. Gao, H. Dong, B. Ning, and J. Xun, Adaptive neural dy-namic surface control with truncated adaptation for uncertainsaturated nonlinear systems, Control and Intelligent Systems,43(4), 2015, 175–182.
  25. [25] H. Dong, Y. Wang, and S. Gao, Observer-based adaptive fuzzydynamic surface nonlinear control with sampled output anddelayed measurement, Control and Intelligent Systems, 45(4),2017.
  26. [26] S. Li and Z. Xiang, Adaptive prescribed performance control forswitched nonlinear systems with input saturation, InternationalJournal of Systems Science, 49(1), 2018, 113–123.
  27. [27] S. Li, C. K. Ahn, and Z. Xiang, Adaptive fuzzy control ofswitched nonlinear time-varying delay systems with prescribedperformance and unmodeled dynamics, Fuzzy Sets and Systems,371, 2019, 40–60.
  28. [28] A. Rabeh, F. Ikhouane, and E. Giri, Nonlinear time-varyingsystem control using the adaptive backstepping technique, 2001European Control Conference (ECC), Porto, Portugal, 2001,2422–2427.
  29. [29] R. Marino and P. Tomei, Robust stabilization of feedbacklinearizable time-varying uncertain nonlinear systems, Auto-matica, 29(1), 1993, 181–189.
  30. [30] R. Marino and P. Tomei, Robust adaptive state-feedback track-ing for nonlinear systems, IEEE Transactions on AutomaticControl, 43(1), 1998, 84–89.
  31. [31] B. Song and J.K. Hedrick, Dynamic surface control of uncertainnonlinear systems: an LMI approach (Berlin: Springer Science& Business Media, 2011).
  32. [32] J. Na, J. Yang, X. Ren and Y. Guo, Robust adaptive estima-tion of nonlinear system with time-varying parameters, Inter-national Journal of Adaptive Control and Signal Processing,29(8), 2015, 1055–1072.
  33. [33] R. Marino and P. Tomei, An adaptive output feedback controlfor a class of nonlinear systems with time-varying parameters,IEEE Transactions on Automatic Control, 44(11), 1999, 2190–2194.
  34. [34] C.C. De Wit, H. Olsson, K.J. Astrom and P. Lischinsky, A newmodel for control of systems with friction, IEEE Transactionson Automatic Control, 40(3), 1995, 419–425.72

Important Links:

Go Back