Xiaoping Jia,∗ Chengqi Sun,∗ and Jun Fu∗∗


  1. [1] P.J. Lee and S.R. Shim, An improvement plan of the interactiveROK army interactive electronic technical manuals, The KoreaAcademia-Industrial Cooperation Society, 21(3), 2020, 399–406.
  2. [2] G. Niu and H. Li, IETM centered intelligent maintenancesystem integrating fuzzy semantic inference and data fusion,Microelectronics Reliability, 75(75), 2017, 197–204.
  3. [3] J. Wu, H. Zuo, Z. Cheng, and Y. Yang, Research on IETM datainteractive reading technology, Chinese Automation Congress(CAC 2020), Shanghai, CA, 2020.
  4. [4] Y.Q. Ma, L.R. Meng, and Y. Qin, Research on PDF docu-ment publishing model for IETM, DEStech Transactions onComputer Science and Engineering, Beijing, CA, 2017.
  5. [5] H. Li and G. Niu, A novel diagnosis method for intelligentIETM platform based on cosine similarity and fuzzy semanticinference, Prognostics and System Health Management Con-ference (PHM 2016), Chengdu, CA, 2016.
  6. [6] H.B. Sun, Z.C. Xu, and J. Zhou, Research and design ofthe remote fault diagnosis system for complicated equipmentbased on intelligent IETM, Advanced Materials Research, 2012,1564–1568.
  7. [7] Z. Shams and S. Seyedtabaii, Nonlinear flexible link robotjoint-fault estimation using TS fuzzy observers, InternationalJournal of Robotics and Automation, 35(1), 2020, 86–93.
  8. [8] G. Niu and H. Li, IETM integrated diagnosis system basedon semantic inference and data fusion, Chinese Journal ofScientific Instrument, 37(9), 2016, 1971–1977.
  9. [9] T.J. Li, L. Gao, Z.Y. Liu, Y.R. Xu, et al., The fault diag-nosis system design based on PMA, Applied Mechanics andMaterials, 2012, 304–307.
  10. [10] S. Chtourou, M. Kharrat, N. Amor, M. Jallouli, et al., Alow-cost prototyping platform for LoT device development androbotics, International Journal of Robotics and Automation,32(3), 2017, 234–242.
  11. [11] G. Retscher and A. Leb, Development of a smartphone-baseduniversity library navigation and information service employingWi-Fi location fingerprinting, Sensors, 21(2), 2021, 432.
  12. [12] V. Sangiorgio, S. Martiradonna, F. Fatiguso, and I. Lombillo,Augmented reality based – decision making (AR-DM) to sup-port multi-criteria analysis in constructions, Automation inConstruction, 124(2), 2021, 103567–103577.
  13. [13] A. Blaga, C. Militaru, A.D. Mezei, and L. Tamas, Augmentedreality integration into MES for connected workers. Roboticsand Computer-Integrated Manufacturing, 68, 2021, 102057–102063.
  14. [14] C. Zhong, S. Liu, and B. Zhang, Regionalized qualitativespatial representation model and its application to mobile robotnavigation, International Journal of Robotics and Automation,35(5), 2020, 355–364.
  15. [15] S.F. Li, P. Zheng, and L.Y. Zheng, An AR-assisted deeplearning-based approach for automatic inspection of aviationconnectors, IEEE Transactions on Industrial Informatics,17(3), 2021, 1721–1731.
  16. [16] J. Ding, Y. Zhu, M. Luo, M. Zhu, et al., AR assisted processguidance system for ship block fabrication, International Con-ference on Human-Computer Interaction(HCI International2020), Copenhagen, CA, 2020.
  17. [17] D. Kim, J. Park, and K. H. Ko, Development of an AR basedmethod for augmentation of 3D CAD data onto a real shipblock image, Computer-Aided Design, 98, 2018, 1–11.
  18. [18] P. Fraga-Lamas, T. M. Fernandez-Carames, O. Blanco-Novoa,and M. A. Vilar-Montesinos, A review on industrial augmentedreality systems for the industry 4.0 shipyard, IEEE Access, 6,2018, 13358–13375.
  19. [19] T. Choi and Y. Seo, A real-time physical progress measurementmethod for schedule performance control using vision, an ARmarker and machine learning in a ship block assembly process,Sensors, 20(18), 2020, 5386.
  20. [20] Y.J. Oh, O.H. Cho, and E.K. Kim, Design of 3D ship displaysystem using android, The Journal of the Korea Institute ofElectronic Communication Sciences, 7(5), 2012, 1011–1016.
  21. [21] J. M. Lee, K. H. Lee, B. Nam, and Y. Wu, Study on image-based ship detection for AR navigation, 6th InternationalConference on IT Convergence and Security (ICITCS 2016),Prague, CA, 2016.
  22. [22] M. Martelli, M. Figari, P. Cassar, A. Gotta, et al., Enhancednavigation at sea: An augmented reality-based tool for bridgeoperators, Proceedings of the International Naval EngineeringConference and Exhibition (INEC 2018), Glasgow, CA, 2018.
  23. [23] J. Reichers, N. Brannon, J. Rubini, N. Hillis, et al., Visionship information overlay and navigation “VISION” system,International Conference on Applied Human Factors and Er-gonomics(AHFE 2019), Washington, CA, 2019.
  24. [24] K. Nordby, E. Gernez, S. Frydenberg, and J.O. Eikenes, Aug-menting OpenBridge: An open user interface architecture foraugmented reality applications on ship bridges, Conferenceon Computer and IT Applications in the Maritime Indus-tries(COMPIT 2020), Pontignano, CA, 2020.
  25. [25] M. Takenaka, C. Nishizaki, and T. Okazaki, Developmentof ship collision prevention device with augmented realitytoolkit, IEEE International Conference on Systems, Man andCybernetics (SMC 2019), Bari, CA, 2019.
  26. [26] J. Sun, and H.J. Xu, Augmented reality technology-based shipexperiment teaching system, Patent CN 107705636A, 2018.
  27. [27] T. Okazaki, and R. Takaseki, Override ship maneuveringsimulator using AR toolkit, Intelligent Automation and SoftComputing, 23(1), 2017, 167–174.
  28. [28] M. Nayak, A method of Sship handling training set in aug-mented reality: A feasibility study, master’s diss., Faculty ofElectrical Engineering, Mathematics, and Computer Science,Delft University of Technology, 2017.
  29. [29] T. Butkiewicz, Designing augmented reality marine navigationaids using virtual reality, OCEANS 2017, Anchorage, CA,2017.
  30. [30] Web of Science, Search results for keywords AR IETM andSHIP, mode=GeneralSearch&SID=8C1AXMI6P3cOckDO24j, February 28, 2021.
  31. [31] Microsoft Academic, Search results for keywords AR IETM andSHIP,, February 28,2021.
  32. [32] P. Jain, J. Manweiler, and R.R. Choudhury, OverLay: Practicalmobile augmented reality, 13th Annual International Confer-ence on Mobile Systems, Applications, and Services, Florence,CA, 2015.
  33. [33] X.D. Li, C.M. Luo, J. Dezert, and Y.Z. Tan, Generic objectrecognition based on feature fusion in robot perception, In-ternational Journal of Robotics and Automation, 31(5), 2016,409–415.
  34. [34] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: Anefficient alternative to SIFT or SURF, International Conferenceon Computer Vision (ICCV 2011), Barcelona, CA, 2011.
  35. [35] D.S. Dev, and D.R. Kisku, Pattern matching using all-directionsymmetric structure with image variations, International Jour-nal of Robotics and Automation, 35(4), 2020, 291–304.161
  36. [36] O. Miksik, and K. Mikolajczyk, Evaluation of local detectorsand descriptors for fast feature matching, 21st InternationalConference on Pattern Recognition (ICPR 2012), Tsukuba,CA, 2012.
  37. [37] M. Bansal, M. Kumar, and M. Kumar, 2D object recognition:A comparative analysis of SIFT, SURF and ORB featuredescriptors, Multimedia Tools and Applications, 2021, 1–19.
  38. [38] C. Ma, X. Hu, J. Xiao, and G. Zhang, Homogenized ORBalgorithm using dynamic threshold and improved quadtree,Mathematical Problems in Engineering, 2021, 2021, 1–19.
  39. [39] Y.R. Ding, J.D. Wang, Y.J. Qiu, and H.B. Yu, FAST featuredetection algorithm based on self-adaptive threshold selection,Command Control and Simulation, 35(2), 2013, 47–53.
  40. [40] X.P. Jia, Y.J. Yang, and Y.Y. Yu, Research of marine electronicmanual based on mobile augmented reality technology, Journalof Qingdao Ocean Shipping Mariners College, 35(2), 2014,8–12.
  41. [41] E. Salvador, A. Cavallaro, and T. Ebrahimi, Cast shadowsegmentation using invariant color features, Computer Visionand Image Understanding, 95(2), 2004, 238–259.
  42. [42] J.Y. Choi, Y.M. Ro, and K.N. Plataniotis, Color local texturefeatures for color face recognition, IEEE Transactions on ImageProcessing, 21(3), 2012, 1366–1380.
  43. [43] Z.G. Xiong, Z.W. Tang, X.W. Chen, X.M. Zhang, et al.,Research on image retrieval algorithm based on combination ofcolor and shape features. Journal of Signal Processing Systems,93, 2021, 139–146.
  44. [44] S. Miah, P.A. Farkas, W. Gueaieb, H. Chaoui, et al., Lineartime-varying feedback law for vehicles with Ackermann steering,International Journal of Robotics and Automation, 32(1),2017, 33–40.
  45. [45] U. Rosolia, and A.D. Ames, Multi-rate control design leveragingcontrol barrier functions and model predictive control policies,IEEE Control Systems Letters, 5(3), 2021, 1007–1012.
  46. [46] G. Norman, Likert scales, levels of measurement and the “laws”of statistics, Advances in Health Sciences Education, 15(5),2010, 625–632.

Important Links:

Go Back