Purushottam Sharma, Aazar Imran Khan, and Samyak Jain


  1. [1] M. Alshehri, P. Sharma, R. Sharma, and O. Alfarraj, Motion-based activities monitoring through biometric sensors usinggenetic algorithm, Computers, Materials and Continua, 66(3),2021, 2525–2538. DOI:10.32604/cmc.2021.012469.
  2. [2] D.F. Atrevi, D. Vivet, F. Duculty, and B. Emile, A very simpleframework for 3D human poses estimation using a single 2Dimage: Comparison of geometric moments descriptors, PatternRecognition, 71, 2017, 389–401.
  3. [3] C. ´Alvarez-Aparicio, ´A.M. Guerrero-Higueras, M.´A. Gonz´alez-Santamarta, A. Campazas-Vega, V. Matell´an, and C.Fern´andez-Llamas, Biometric recognition through gait analysis,Scientific Reports, 12, 2022, 14530. DOI:10.1038/s41598-022-18806-4.
  4. [4] C. BenAbdelkader, R. Cutler, and L. Davis, Stride andcadence as a biometric in automatic person identification andverification, Proc. Fifth IEEE International Conference onAutomatic Face Gesture Recognition, Washington, DC, 2002,372–377.
  5. [5] R. Chellappa, A.K. Roy-Chowdhury, and A. Kale, Humanidentification using gait and face, Proc. 2007 IEEE Conferenceon Computer Vision and Pattern Recognition, Minneapolis,MN, 2007, 1–2.
  6. [6] J. Chen, Gait correlation analysis based human identification,The Scientific World Journal, 2014, 2014, 168275.
  7. [7] R.T. Collins, R. Gross, and J. Shi, Silhouette-based humanidentification from body shape and gait, Proc. FifthIEEE International Conference on Automatic Face GestureRecognition, Washington, DC, 2002, 366–371.
  8. [8] M. Ekinci, Human identification using gait, Turkish Journalof Electrical Engineering & Computer Sciences, 14(2), 2006,267–291.
  9. [9] M. Ekinci and E. Gedikli, Silhouette based human motiondetection and analysis for real-time automated video surveil-lance, Turkish Journal of Electrical Engineering & ComputerSciences, 13(2), 2005, 199–229.
  10. [10] N. Gupta, P. Sharma, V. Deep, and V.K. Shukla, Automatedattendance system using OpenCV, Proc. ICRITO 2020 - IEEE8th International Conference on Reliability, Infocom Technolo-gies and Optimization (Trends and Future Directions), Noida,2020, 1226–1230. DOI:10.1109/ICRITO48877.2020.9197936.
  11. [11] C. Gang, Y. Zeping, Z. Wen, F. Tianxiang, and W. Sifan, Apersonalised reading education platform under big data-drivendecision-making scheme, Mechatronic Systems and Control,51(3), 2023, 114–121. DOI:10.2316/J.2023.201-0055.
  12. [12] C. Huaizhong and Y. Jianmei, Trajectory tracking controlsystem of wheeled mobile robot based on PID feed-forward,Mechatronic Systems and Control, 51(2), 2023, 109–114.DOI:10.2316/J.2022.201-0208.
  13. [13] A. Kale, A. Sundaresan, A.N. Rajagopalan, N.P. Cuntoor, A.K.Roy-Chowdhury, V. Kruger, and R. Chellappa, Identificationof humans using gait, IEEE Transactions on Image Processing,13(9), 2004, 1163–1173.
  14. [14] A.I. Khan, S. Jain, and P. Sharma, A new approach forhuman identification using AI, Proc. International Mobileand Embedded Technology Conference, MECON, Noida, 2022,645–651. DOI:10.1109/MECON53876.2022.9752153.
  15. [15] Li Wang, Automatic tracking algorithms based on wearabletechnology, Mechatronic Systems and Control, 51(1), 2023,16–21. DOI:10.2316/J.2022.201-0212.
  16. [16] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.M. Makela,and H.A. Ailisto, Identifying users of portable devices fromgait pattern with accelerometers, Proc. (ICASSP’05) IEEEInternational Conference on Acoustics, Speech, and SignalProcessing, Philadelphia, PA, 2005, 973–976.
  17. [17] H. Masood and H. Farooq, An appearance invariantgait recognition technique using dynamic gait features,International Journal of Optics, 2021, 2021, 5591728.
  18. [18] T.B. Moeslund and E. Granum, A survey of computer vision-based human motion capture, Computer Vision and ImageUnderstanding, 81(3), 2001, 231–268.
  19. [19] H. Ng, W.H. Tan, H.L. Tong, J. Abdullah, and R. Komiya,Extraction and classification of human gait features, Proc.International Visual Informatics Conference, Springer, Berlin,Heidelberg, 2009, 596–606.
  20. [20] T.N. Nguyen and J. Meunier, Walking gait dataset: Pointclouds, skeletons and silhouettes, Technical Report 1379, DIRO,University of Montreal, Montreal, QB, 2018.
  21. [21] E. Noyes and R. Jenkins, Deliberate disguise in faceidentification, Journal of Experimental Psychology: Applied,25(2), 2019, 280–290.
  22. [22] M. Otero, Application of a continuous wave radar forhuman gait recognition, Proc. Signal Processing, SensorFusion, and Target Recognition XIV, Orlando, FL, 2005,538–548.
  23. [23] M. Paul, S.M. Haque, and S. Chakraborty, Human detectionin surveillance videos and its applications-a review, EURASIPJournal on Advances in Signal Processing, 2013(1), 2013,1–16.
  24. [24] M. Quwaider and S. Biswas, Body posture identificationusing hidden Markov model with a wearable sensor network,Bodynets, 8, 2008, 1–8.
  25. [25] M.P. Rani and G. Arumugam, An efficient gait recognition sys-tem for human identification using modified ICA, InternationalJournal of Computer Science and Information Technology,2(1), 2010, 55–67.
  26. [26] V.R. Reddy, K. Chakravarty, and S. Aniruddha, Personidentification in natural static postures using kinect, Proc.European Conference on Computer Vision, Cham, 2014,793–808.
  27. [27] P. Sharma, K. Saxena, and R. Sharma, Heart disease predictionsystem evaluation using C4.5 rules and partial tree, Proc.Computational Intelligence in Data Mining, New Delhi, 2016.DOI:10.1007/978-81-322-2731-1 26.
  28. [28] P. Sharma, A. Imran Khan, S. Jain, and A. Srivastava,Artificial intelligence driven human identification, Journal ofInformation Technology Management, 15(3), 2023, 113–133.DOI:10.22059/jitm.2023.93629.

Important Links:

Go Back