STM-SLAM: TRACKING AND MAPPING BASED ON SOLOV2 IN DYNAMIC SCENES

Zhuo Pang,∗ Juwei Zhang,∗∗ Bo Liu,∗ and Benyi Ren∗∗

References

  1. [1] O.Y. Agunbiade, M. Mayedwa, and A.O. Johnson, Simulta-neous localisation and mapping (SLAM) technique in realtime: An introduction of dik-SLAM, International Journal ofRobotics and Automation,39(6), 2024, 490–503.
  2. [2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,J. Neira, I. Reid, and J.J. Leonard, Past, present, and futureof simultaneous localization and mapping: Toward the robust-perception age, IEEE Transactions on Robotics, 32(6), 2016,1309–1332.
  3. [3] J. Engel, T. Sch¨ops, and D. Cremers, LSD-SLAM: Large-scaledirect monocular SLAM, in Proceeding European Conferenceon Computer Vision, Zurich, 2014, 834–849.
  4. [4] C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fastsemi-direct monocular visual odometry, in Proceeding IEEEInternational Conference on Robotics and Automation (ICRA),Hong Kong, 2014, 15–22.
  5. [5] R. Wang, M. Schworer, and D. Cremers, Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras, inProceeding of the IEEE International Conference on ComputerVision, Venice, 2017, 3903–3911.
  6. [6] C. Campos, R. Elvira, J.J. G. Rodr´ıguez, J.M. Montiel,and J.D. Tard´os, ORB-SLAM3: An accurate open-sourcelibrary for visual, visual–inertial, and multimap SLAM, IEEETransactions on Robotics, 37(6), 2021, 1874–1890.
  7. [7] S. Badalkhani, R. Havangi, and M. Farshad, An improvedsimultaneous localization and mapping for dynamic environ-ments, International Journal of Robotics and Automation,36(6), 2021, 374–382.
  8. [8] A.K. Aggarwal, On the use of artificial intelligence techniquesin transportation systems, International Journal of SoftComputing and Engineering, 5(5), 2015, 21–24.
  9. [9] B. Han and L. Xu, MLC-SLAM: Mask loop closing formonocular SLAM, International Journal of Robotics andAutomation, 37(1), 2022, 107–114.
  10. [10] M.A. Fischler and R.C. Bolles, Random sample consensus: Aparadigm for model fitting with applications to image analysisand automated cartography, Communications of the ACM,24(6), 1981, 381–395.
  11. [11] Y. Sun, M. Liu, and M.Q.H. Meng, Motion removal forreliable RGB-D SLAM in dynamic environments, Robotics andAutonomous Systems, 108, 2018, 115–128.
  12. [12] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, Solov2:Dynamic and fast instance segmentation, Advances in NeuralInformation Processing Systems, 33, 2020, 17721–17732.
  13. [13] Y. Sun, M. Liu, and M.Q.H. Meng, Improving RGB-D SLAM indynamic environments: A motion removal approach, Roboticsand Autonomous Systems, 89, 2017, 110–122.
  14. [14] S. Yang, G. Fan, L. Bai, R. Li, and D. Li, MGC-VSLAM: Ameshing-based and geometric constraint VSLAM for dynamicindoor environments, IEEE Access, 8, 2020, 81007–81021.
  15. [15] J. Cheng, C. Wang, and M.Q.H. Meng, Robust visuallocalization in dynamic environments based on sparse motionremoval, IEEE Transactions on Automation Science andEngineering, 17(2), 2019, 658–669.
  16. [16] R. Mur-Artal and J.D. Tard´os, ORB-SLAM2: An open-sourceSLAM system for monocular, stereo, and RGB-D cameras,IEEE Transactions on Robotics, 33(5), 2017, 1255–1262.12
  17. [17] B. Bescos, J.M. F´acil, J. Civera, and J. Neira, DynaSLAM:Tracking, mapping, and inpainting in dynamic scenes,IEEE Robotics and Automation Letter, 3(4), 2018,4076–4083.
  18. [18] K. He, G. Gkioxari, P. Doll´ar, and R. Girshick, Mask R-CNN, inProceeding of the IEEE International Conference on ComputerVision, Venice, 2017, 2961–2969.
  19. [19] B. Bescos, C. Campos, J.D. Tard´os, and J. Neira, DynaSLAMII: Tightly-coupled multi-object tracking and SLAM, IEEERobotics and Automation Letters, 6(3), 2021, 5191–5198.
  20. [20] F. Gan, S. Xu, L. Jiang, Y. Liu, Q. Liu, and S. Lan, Robustvisual slam algorithm based on target detection and clusteringin dynamic scenarios, Frontiers in Neurorobotics, 18, 2024,1431897.
  21. [21] S. Zhou, R. Guo, J. Zhang, W. Chen, Y. Peng, Y.Tong, and Y. Dai, Remote sensing image object detectionbased on improved YOLOv5, in Proceedingof the IEEE 3rdInternational Conference on Computer Communication andArtificial Intelligence (CCAI), Taiyuan, 2023, 227–232.
  22. [22] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q.Fei, DS-SLAM: A semantic visual SLAM towards dynamicenvironments, in Proceeding of the IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS), Madrid,Oct. 2018,1168–1174.
  23. [23] M. Everingham, S.A. Eslami, L. Van Gool, C.K. Williams,J. Winn, and A. Zisserman, The pascal visual object classeschallenge: A retrospective, International Journal of ComputerVision, 111, 2015, 98–136.
  24. [24] H. Xu, C. Yang, and Y. Feng, FD-SLAM: Real-time trackingand mapping in dynamic environments, in Proceeding of theIEEE International Conference on Unmanned Systems andArtificial Intelligence (ICUSAI), Xi’an, 2019, 166–171.
  25. [25] A. Kumar, SURF feature descriptor for image analysis, Imagingand Radiation Research, 6(1), 2024, 5643.
  26. [26] A. Kumar, Geo-Tagged 3D geometric modeling of urbanstructures by mitigating reflected GPS signals using a laserrange sensor, in Proceeding of the Science and InformationConference, 2024, 396–414.
  27. [27] A.K. Aggarwal, Digital preservation of cultural heritage forfuture generations, Interdisciplinary Digital Preservation Toolsand Technologies, 2017, 242–255.
  28. [28] J. Sturm, N. Engelhard, F. Endres, W. Burgard, andD. Cremers, A benchmark for the evaluation of RGB-DSLAM systems, in Proceeding of the IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Algarve, 2012,573–580.
  29. [29] Y. Liu and J. Miura, RDS-SLAM: Real-time dynamic SLAMusing semantic segmentation methods, IEEE Access, 9, 2021,23772–23785.
  30. [30] A. Li, J. Wang, M. Xu, and Z. Chen, DP-SLAM: A visualSLAM with moving probability towards dynamic environments,Information Sciences, 556, 2021, 128–142.
  31. [31] W. Wu, L. Guo, H. Gao, Z. You, Y. Liu, and Z. Chen,YOLO-SLAM: A semantic SLAM system towards dynamicenvironment with geometric constraint, Neural Computing andApplications, 34, 2022, 1–16.
  32. [32] F. Zhong, S. Wang, Z. Zhang, C. Chen, and Y. Wang, Detect-SLAM: Making object detection and SLAM mutually beneficial,in Proceeding of the IEEE Winter Conf. on Applications ofComputer Vision (WACV), Lake Tahoe, 2018, 1001–1010.

Important Links:

Go Back