Caidong Wang,∗ Yongfeng Tian,∗ Huadong Zheng,∗ Hengyuan Hu,∗ and Xin Zhang∗
[1] Y. Gan, J. Duan, and X. Dai, A calibration method ofrobot kinematic parameters by drawstring displacement sensor,International Journal of Advanced Robotic Systems, 16(5),2019, 1729881419883072. [2] X. Li, E. Zhang, X. Fang, and B. Zhai, Calibration method forindustrial robots based on the principle of Perigon error close,IEEE Access,;10, 2022, 48569–48576. [3] C. Escande, T. Chettibi, R. Merzouki, V. Coelen, and P.M. Pathak, Kinematic calibration of a multisection bionicmanipulator, IEEE/ASME Transactions on Mechatronics,20,2015, 663–674. [4] H.N. Nguyen, J. Zhou, and H.J. Kang, A calibration method forenhancing robot accuracy through integration of an extendedKalman filter algorithm and an artificial neural network,Neurocomputing, 151, 2015, 996–1005. [5] Y. Bai and H. Zhuang, On the comparison of bilinear, cubicspline, and fuzzy interpolation techniques for robotic positionmeasurements, IEEE Transactions on Instrumentation andMeasurement, 54, 2005, 2281–2288. [6] J. Qi, B. Chen, and D. Zhang, A calibration method forenhancing robot accuracy through integration of kinematicmodel and spatial interpolation algorithm, Journal ofMechanisms and Robotics, 13(6), 2021, 61013. [7] Z.J. Li and J. Schicho, A technique for deriving equationalconditions on the Denavit–Hartenberg parameters of 6Rlinkages that are necessary for movability, Mechanism andMachine Theory, 94, 2015, 1–8. [8] H. Zhuang, Z.S. Roth, and F. Hamano, A completeand parametrically continuous kinematic model for robotmanipulators, IEEE Transactions on Robotics and Automation,8, 1992, 451–63. [9] S.A. Hayati, Robot arm geometric link parameter estimation,in Proceeding of the 22nd IEEE Conference on Decision andControl, San Antonio, TX, 1983, 1477–1483. [10] H.W. Stone and A.C. Sanderson, Statistical performanceevaluation of the S-model arm signature identificationtechnique, in Proceedings IEEE International Conference onRobotics and Automation, Philadelphia, PA, 1988, 939–946. [11] H. Wang, X. Lu, W. Cui, Z. Zhang, and Y. Li, and C.Sheng, General inverse solution of six-degrees-of-freedom serialrobots based on the product of exponentials model, AssemblyAutomation.38, 2018, 361–367. [12] L. Feifei and L. Fei Time-jerk optimal planning of industrialrobot trajectories, International Journal of Robotics andAutomation, 31(1), 2016, 1–7. [13] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu, Neural networkbased robust control of an aircraft, International Journal ofRobotics and Automation, , 35(1), 2020, 516–526. [14] L.C. Kwek, A.W.C. Tan, and E.K. Wong, Generalizedpredictive control on a robotic manipulator system,International Journal of Robotics and Automation, 28(3), 2013,277–283. [15] W. Gan, D. Zhu, and S.X. Yang, A speed jumping-free trackingcontroller with trajectory planner for unmanned underwatervehicle, International Journal of Robotics and Automation,35(5), 2020, 206–0309. [16] J. Denavit and R.S. Hartenberg, A kinematic notation forlower-pair mechanisms based on matrices, Journal of AppliedMechanics, 22, 2021, 215–21. [17] P. Hong, W. Tian, D. Mei, and Y.F. Zeng, Robotic variableparameter accuracy compensation using space grid, Robot,37,2015, 327–35. [18] V. Dharmadasa, C. Kinnard, and M. Bara¨er, Topographic andvegetation controls of the spatial distribution of snow depthin agro-forested environments by UAV lidar, Cryosphere.;17,2023, 1225–1246.12 [19] G.B. Huang, An insight into extreme learning machines:Random neurons, random features and kernels, CognitiveComputation, 6, 2014, 376–390. [20] C. Zhang, X. Cheng, J. He, and G. Liu, Automatic recognitionof adhesion states using an extreme learning machine,International Journal of Robotics and Automation, 32(2), 2017,194–200.
Important Links:
Go Back