Wenhao Huang, Songyi Lu, Yifan Liu, Guoyin Zhang, and Quande Yuan
[1] F. Debbat and L. Adouane, Formation control and roleassignment of autonomous mobile robots in unstructuredenvironment, Mechatronic Systems and Control, 44(2), 2016. [2] C. Jianxian, G. Penggang, W. Yanxiong, and G. Zhitao,Mobile robot navigation using monocular visual-inertial fusion,Mechatronic Systems and Control, 49(1), 2021, 36–40. [3] H. He, W. Xiang, and H. Liu, Autonomous navigationpath planning of service robot based on multi-sensor fusion,Mechatronic Systems and Control, 52(2), 2024, 76–82. [4] D.G. Lowe, Distinctive image features from scale-invariantkeypoints, International Journal of Computer Vision, 60(2),2004, 91–110. [5] H. Bay, T, Tuytelaars, and L.J.V. Gool, SURF: Speeded uprobust features, Computer Vision and Image Understanding,110, 2008, 346–359. [6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: Anefficient alternative to SIFT or surf, International Conferenceon Computer Vision IEEE Computer Society, Barcelona, 2011,2564–2571. [7] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, GCNv2:Efficient correspondence prediction for real-time SLAM, IEEERobotics and Automation Letters, 4(4), 2019, 3505–3512. [8] R. Li, S. Wang, Z. Long, and D. Gu, UnDeepVO: Monocularvisual odometry through unsupervised deep learning, inProceeding of the IEEE International Conference on Roboticsand Automation, Brisbane, QLD, 2017, 7286–7291. [9] L. Zhang, G. Li, and T.H. Li, Temporal-aware SfM-learner:Unsupervised learning monocular depth and motion from stereovideo clips, in Proceeding of the IEEE Conference on MultimediaInformation Processing and Retrieval (MIPR), Shenzhen, 2020,253–258. [10] S.Y. Loo, A.J. Amiri, S. Mashohor, S.H. Tang, and H.Zhang, CNN-SVO: Improving the mapping in semi-direct visualodometry using single-image depth prediction, in Proceedingof the International Conference on Robotics and Automation(ICRA), Montreal, QC, 2019, 5218–5223. [11] A. Li, J. Wang, M. Xu, and Z. Chen, DP-SLAM: A visualSLAM with moving probability towards dynamic environments,Information Sciences, 556, 2021, 128–142. [12] D. Detone, T. Malisiewicz, and A. Rabinovich Deep imagehomography estimation, 2016, arXiv:1606. 03798v1. [13] D. Detone, T. Malisiewicz, and A. Rabinovich, Towardgeometric deep SLAM, ResearchGate, 2017, to be published. [14] P.H.S. Torrand A. Zisserman, MLESAC: A new robustestimator with application to estimating image geometry,Computer Vision and Image Understanding, 78(1), 2000,138–156. [15] O Chum and J Matas, Optimal Randomized RANSAC, IEEETransactions on Pattern Analysis & Machine Intelligence,30(8), 2008,1472–1482. [16] D. DeTone, T. Malisiewicz, and A. Rabinovich, Towardgeometric deep SLAM, 2017, arXiv:1707.07410. [17] J. Huang, S. Yang, Z. Zhao, Y.K. Lai, and S.M. Hu,ClusterSLAM: A SLAM backend for simultaneous rigid bodyclustering and motion estimation, International Conference onComputer Vision, 2021, 87–101.
Important Links:
Go Back