An Advanced Model for Short-Term Forecasting of Mean Wind Speed and Wind Electric Power

I.J. Ramírez-Rosado and L.A. Fernández-Jiménez

References

  1. [1] M.R. Milligan, AH. Miller, & F. Chapman, Estimating the economic value of wind forecasting to utilities, Proc. Windpower ’95, American Wind Energy Association, Washington, DC, 1995, 285–294.
  2. [2] G.N. Karioniotakis, G.S. Stavrakakis, & E.F. Nogaret, Wind power forecasting using advanced neural networks, IEEE Trans. on Energy Conversion, 11 (4), 1996, 762–767. doi:10.1109/60.556376
  3. [3] M.C. Alexiadis, P.S. Dokopoulos, & H.S. Sahsamanoglou, Wind speed and power forecasting based on spatial correlation 5 Table 4 Comparation of Models Model RMS ACH Persistence 0.753 – Mean 1.774 135.6% New Reference 0.737 2.12% Holt-Winters (additive seasonality) 0.744 1.20% ARIMAX 0.700 7.04% TDNN 0.694 7.83% Fourier-MLPs 0.7063 6.20% Fourier-FISs 0.7061 6.23% Fourier-FISs with modified hour 0.6839 9.17% models, IEEE Trans. on Energy Conversion, 14 (3), 1999, 836–837. doi:10.1109/60.790962
  4. [4] A.F. Atiya, S.M. El-Shoura, S.I. Shaheen, & M.S. El-Sherif, A comparison between neural-network forecasting techniques— Case study: River flow forecasting, IEEE Trans. on neural networks, 10 (2), 1999, 402–409. doi:10.1109/72.750569
  5. [5] T.S. Nielsen, A. Joensen, H. Madsen, L. Landberg, & G. Giebel, A new reference for wind power forecasting, Wind Energy, 1 (1), 1998, 29–34. doi:10.1002/(SICI)1099-1824(199809)1:1<29::AID-WE10>3.0.CO;2-B
  6. [6] S. Haykin, Neural networks: A comprehensive foundation (Upper Saddle River, NJ: Prentice Hall, 1999).
  7. [7] J.S.R. Jang, C.T. Sun, & E. Mizutani, Neuro-fuzzy and soft computing (Englewood Cliffs, NJ: Prentice Hall, 1997).
  8. [8] T. Takagi & M. Sugeno, Fuzzy identification systems and its applications to modelling and control, IEEE Trans. on Systems, Man and Cybernetics, 15 (1), 1985, 116-132.

Important Links:

Go Back