Condition Monitoring using Marginal Energy and Hidden Markov Model

M. Ge, R. Du, and Y.S. Xu

References

  1. [1] S.G. Tzafestas, Advances in manufacturing: Decision, control and information technology (London: Springer, 1999).
  2. [2] P. Chen, Punch condition monitoring in sheet metal stamping under progressive stamping environments, doctoral diss., University of Michigan, Ann Arbor, MI, 1997.
  3. [3] C.K.H. Koh, J. Shi, W.J. Williams, & J. Ni, Multiple faults detection and isolation using the haar transform, Part 2: Application to the stamping process, Trans. ASME Journal of Manufacturing Science and Engineering, 121(2), 1999, 295–299.
  4. [4] J. Jin & J. Shi, Diagnostic feature extraction from stamping tonnage signals based on design of experiments, Trans. ASME, Journal of Manufacturing Science and Engineering, 122(2), 2000, 360–369. doi:10.1115/1.538926
  5. [5] T. Hastie, A. Buja, & R. Tibshirani, Penalized discriminant analysis, Annals of Statistics, 23, 1995, 73–102. doi:10.1214/aos/1176324456
  6. [6] O.S. Mesina & R. Langari, A neuro-fuzzy system for tool condition monitoring in metal cutting, Trans. ASME, Journal of Manufacturing Science and Engineering, 123, 2001, 312–318. doi:10.1115/1.1363599
  7. [7] W. Fang, P. Willett, & S. Deb, Condition monitoring for helicopter data, 2000 IEEE Int. Conf. on Systems, Man, and Cybernetics, 1, 2000, 224–229. doi:10.1109/ICSMC.2000.884993
  8. [8] G. Nakhaeizadeh & C.C. Taylor, Machine learning and statistics: The interface (New York: John Wiley and Sons, 1997).
  9. [9] G.D. Riccia, H.J. Lenz, & R. Kruse, Learning, networks and statistics (Vienna: Springer-Verlag, 1997).
  10. [10] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77(2), 1989, 257–286. doi:10.1109/5.18626
  11. [11] B.H. Juang, On the hidden Markov model and dynamic time warping for speech recognition: A unified view, AT&T Technical Journal, 63(7), 1984, 1213–1243.
  12. [12] J. Ying, T. Kirubarajan, K.R. Pattipati, & A. Patterson-Hine, A hidden Markov model-based algorithm for fault diagnosis with partial and imperfect tests, IEEE Trans. on System, Man, And Cybernetics, Part C: Applications and Reviews, 30(4), 2000, 463–473. doi:10.1109/5326.897073
  13. [13] A. Kundu, G.C. Chen, & C.E. Persons, Transient sonar classification using hidden Markov models and neural nets, IEEE Journal of Oceanic Engineering, 19(1), 1994, 87–99. doi:10.1109/48.289454
  14. [14] H.M. Ertunc, K.A. Loparo, & H. Ocak, Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs), International Journal of Machine Tools & Manufacture, 41, 20001, 1363–1384. doi:10.1016/S0890-6955(00)00112-7
  15. [15] P. Smyth, Markov monitoring with unknown states, IEEE Journal on Selected Areas in Communications, 12(9), 1994, 1600–1612. doi:10.1109/49.339929
  16. [16] G. Strang & T. Nguyen, Wavelets and filter banks (Wellesley, MA: Wellesley-Cambridge, 1996).
  17. [17] M.V. Wickerhauser, Adapted wavelet analysis: From theory to software (Wellesley, MA: A.K. Peters, 1994).
  18. [18] R.R. Coifman & M.V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. on Information Theory, 38(2), 1992, 713–718. doi:10.1109/18.119732
  19. [19] Y. Ephraim & N. Merhav, Hidden Markov processes, IEEE Trans. on Information Theory, 48(6), 2002, 1518–1569. doi:10.1109/TIT.2002.1003838
  20. [20] J. Yang, Y. Xu, & C.S. Chen, Human action learning via hidden Markov model, IEEE Trans. on System, Man, And Cybernetics, Part A: System and Human, 27(1), 1997, 34–44. doi:10.1109/3468.553220
  21. [21] G. Tlusty, Manufacturing processes and equipment (Englewood Cliffs: Prentice Hall, 2000).
  22. [22] S.M. Kay, Modern spectral estimation: Theory and application (Englewood Cliffs, NJ: Prentice Hall, 1988).

Important Links:

Go Back