On Stabililty Radius and State Feedback

R. Rajamani and Y.M. Cho

References

  1. [1] C.F. Van Loan, How near is a stable matrix to an unstable matrix?, Contemporary Mathematics, 47, 1985, 465–477.
  2. [2] D. Hinrichsen & A.J. Pritchard, Stability radius of structured pertubations and the algebraic Riccati equation, Systems and Control Letters, 8, 1986, 105–113. doi:10.1016/0167-6911(86)90068-X
  3. [3] C.C. Paige, Properties of numerical algorithms related to computing controllability, IEEE Trans. on Automatic Control, 26 (1), 1981, 130–138. doi:10.1109/TAC.1981.1102563
  4. [4] R. Eising, Between controllable and uncontrollable, Systems & Control Letters, 4, 1984, 263–264. doi:10.1016/S0167-6911(84)80035-3
  5. [5] D.L. Boley & W.S. Lu, Measuring how far a controllable system is from an uncontrollable one, IEEE Trans. on Automatic Control, AC-31, 1986, 249–252. doi:10.1109/TAC.1986.1104240
  6. [6] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM Journal on Scientific and Statistical Computing, 9, 1988, 875–881. doi:10.1137/0909059
  7. [7] C. Kenney & A.J. Laub, Controllability and stability radii for companion form systems, Mathematics of Control, Signals and Systems, 1, 1988, 239–256. doi:10.1007/BF02551286
  8. [8] B.A. Francis, A course in H∞control theory, Lecture Notes in Control and Information Sciences, Vol. 88 (New York: Springer-Verlag, 1987).
  9. [9] P.P. Khargonekar, I. Peterson, & K. Zhou, Robust stabilization of uncertain linear systems, IEEE Trans. on Automatic Control, 35 (3), 1990, 356–361. doi:10.1109/9.50357
  10. [10] S. Bittanti, A.J. Laub, & J.C. Willems, The Riccati equation (Berlin: Springer-Verlag, 1991).

Important Links:

Go Back