Intelligent Fusion of Sensor Data for Product Quality Assessment in a Fishcutting Machine

A. Jain, C.W. de Silva, and Q.M.J. Wu


  1. [1] C.W. de Silva, Research laboratory for fish processing automation, International Journal of Robotics and ComputerIntegrated Manufacturing, 9 (1), 1992, 49–60. doi:10.1016/0736-5845(92)90018-2
  2. [2] R.C. Luo & M.G. Kay, Multi-sensor integration and fusion in intelligent systems, IEEE Trans. on Systems, Man, and Cybernetic, 19 (5), 1989, 901–931. doi:10.1109/21.44007
  3. [3] R.R. Yager & A. Kelman, Fusion of fuzzy information with considerations for compatibility, partial aggregation and reinforcement, International Journal of Approximate Reasoning, 15, 1996, 93–122. doi:10.1016/0888-613X(96)00026-6
  4. [4] E.H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. Comp., C26 (12), 1977, 1182–1192. doi:10.1109/TC.1977.1674779
  5. [5] M. Abdulghafour, T. Chandra, & M.A. Abidi, Data fusion through fuzzy logic applied to feature extraction from multisensory images, Proc. IEEE Int. Conf. Robotics and Automation, Atlanta, GA, 1993, 359–366. doi:10.1109/ROBOT.1993.292171
  6. [6] C.W. de Silva, Intelligent control: Fuzzy logic applications (Boca Raton, FL: CRC Press, 1995).
  7. [7] C.W. de Silva, Control sensors and actuators (Englewood Cliffs, NJ: Prentice-Hall, 1989).
  8. [8] C.W. de Silva & N. Wickramarachchi, Knowledge-based supervisory control system of a fish processing workcell, Part I: System development, Engineering Applications of Artificial Intelligence,11 (1), 1998, 97–118 doi:10.1016/S0952-1976(97)00065-1
  9. [9] MATLAB fuzzy logic toolbox, Mathworks Inc., Natick, MA 1998.

Important Links:

Go Back