Compliance Optimization for Robotic Assemby

I. Sharf and A. Bykov

References

  1. [1] H. Qiao, B.S. Dalay, & J.A.G. Knight, Robotic assemblyoperation strategy investigation without force sensors throughthe research on contact point location and range of pegmovement, Proc. Institute of Mechanical Engineers, 210, 1996,471–485. doi:10.1243/PIME_PROC_1996_210_144_02
  2. [2] A. Lanzon & R.J. Richards, Compliant motion control fornonredundant rigid robotic manipulators, International Journal of Control, 73, 2000, 225–241. doi:10.1080/002071700219777
  3. [3] D. Whitney, Quasi-static assembly of compliantly supportedrigid parts, ASME Journal of Dynamic Systems, Measurement,and Control, 104, 1982, 65–77.
  4. [4] A.J. Critchlow, Introduction to robotics (New York: Macmillan,1985).
  5. [5] M.R. Cutkosky, Robotic grasping and fine manipulation(Kluwer, Boston, 1985).
  6. [6] S. Joo & F. Miyazaki, Development of variable RCC andits application, Proc. IEEE/RSJ Int. Conf. on IntelligentRobots and Systems: Innovations in Theory, Practice andApplications, 2, 1998, 1326–1332. doi:10.1109/IROS.1998.727483
  7. [7] F. Zhao & P.S.Y. Wu, VRCC: A variable remote centercompliance device, Mechatronics, 8, 1998, 657–672. doi:10.1016/S0957-4158(98)00002-6
  8. [8] E.M. Dafaoui, Y. Amirat, J. Pontnau, & Y. Amirat, Analysis and design of a six-DOF parallel manipulator, modeling,singular configurations, and workspace, IEEE Trans. Roboticsand Automation, 14, 1998, 78–92. doi:10.1109/70.660846
  9. [9] T.G. Sugar & V. Kumar, Design and control of a compliant parallel manipulator, Trans. of the ASME Journal of MechanicalDesign, 124, 2002, 676–683. doi:10.1115/1.1517568
  10. [10] R.G. Roberts & T.A. Shirley, Algorithms for passive compliancemechanism design, Proc. 35th Southeastern Symp. on SystemTheory, Morgantown, WV, 2003, 347–351. doi:10.1109/SSST.2003.1194589
  11. [11] Liu Xin-Jun, J.I. Jeong, & K. Jongwon, A three translationalDOFs parallel cube-manipulator, Robotica, 21, 2003, 645–653. doi:10.1017/S0263574703005198
  12. [12] S.L. Canfield, J.W. Beard, N. Lobontiu, E. O’Malley, M.Samuelson, & J. Paine, Development of a spatial compliant manipulator, International Journal of Robotics and Automation,17, 2002, 63–71.
  13. [13] H. Maekawa & K. Komoriya, Development of a micro transferarm for a microfactory, Proc. IEEE Int. Conf. on Robotics andAutomation, 2, 2001, 1444–1451. doi:10.1109/ROBOT.2001.932813
  14. [14] M. Okada, Y. Nakamura, & S. Ban, Design of programmablepassive compliance shoulder mechanism, Proc. IEEE Int. Conf.on Robotics and Automation, 1, 2001, 348–353. doi:10.1109/ROBOT.2001.932576
  15. [15] M.H. Ang, Jr., & G.B. Andeen, Specifying and achievingpassive compliance based on manipulator structure, IEEETrans. Robotics and Automation, 11, 1995, 504–515. doi:10.1109/70.406934
  16. [16] J. Loncaric, Normal forms of stiffness and compliance matrices,IEEE Journal of Robotics and Automation, RA-3, 1987, 567–572.
  17. [17] H.A. ElMaraghy & B. Johns, An investigation into the compliance of SCARA robots, Part 1: Analytical model, ASMEJournal of Dynamic Systems, Measurements, and Control,110, 1988, 18–22.
  18. [18] H.A. ElMaraghy & B. Johns, An investigation into the compliance of SCARA robots, Part 2: Experimental and numerical validation, ASME Journal of Dynamic Systems, Measurements, and Control, 110, 1988, 23–30.
  19. [19] J.M. Schimmels & S. Huang, A passive mechanism thatimproves robotic positioning through compliance and constraint, Journal of Robotics Computer-Integrated Manufacturing, 12(1), 1996, 65–71. doi:10.1016/0736-5845(95)00019-4
  20. [20] T. Patterson & H. Lipkin, A classification of robot compliance,ASME Design Technical Confs.—21st Biennial MechanismsConf., Chicago, September 16–19, 1990, 307–314.
  21. [21] H. Lipkin & T. Patterson, Geometrical properties of modeled robot elasticity, Part 1: Decomposition, ASME DesignTechnical Conf. Scottsdale, DE-Vol. 45, 1992, 179–185.
  22. [22] H. Lipkin & T. Patterson, Geometrical properties of modeledrobot elasticity, Part 2: Center of elasticity, ASME DesignTechnical Conf., Scottsdale, DE-Vol. 45, 1992, 187–193.
  23. [23] P. Blanchet & H. Lipkin, New geometric properties for modeled planar vibration, Proc. 1997 ASME Design EngineeringTechnical Conf., September 14–17, Sacramento, CA, 1997.
  24. [24] S. Huang & J.M. Schimmels, The bounds and realization ofspatial compliances achieved with simple serial elastic mechanisms, IEEE Trans. Robotics and Automation, 16, 2000,99–103. doi:10.1109/70.833197
  25. [25] D. Whitney, Part mating in assembly, in S.Y. Nof (Ed.),Handbook of industrial robotics (John Wiley & Sons: NewYork, 1985), 1084–1116.
  26. [26] S.B. Niku, Introduction to robotics analysis, systems, applications (Prentice-Hall: Upper Saddle River, NJ, 2001).
  27. [27] S.H. Drake, Using compliance in lieu of sensory feedback forautomatic assembly, doctoral diss., Massachusetts Institute ofTechnology, Cambridge, MA, 1977.
  28. [28] J.P. Bourrieres, P. Jeannier, & F. Lhote, Intrinsic complianceof position-controlled robots: Applications in assembly, 5thInt. Conf. on Assembly Automation, Paris, May 22–24, 1984,133–142.
  29. [29] J. Van Vliet, I. Sharf, & O. Ma, Experimental validationof contact dynamics simulation of constrained robotic tasks,International Journal of Robotics Research, 19(12), 2000,1203–1217. doi:10.1177/02783640022068039
  30. [30] W. Wang, R.N.K. Loh, & E.Y. Gu, Passive compliance versusactive compliance in robot-based automated assembly systems,Industrial Robot, 25(1), 1998, 48–57. doi:10.1108/01439919810196964

Important Links:

Go Back