TOWARDS FAST AND SMOOTH SUBDIVISION SURFACE RECONSTRUCTION

H. Hussein Karam, F.F.M. Ghaleb, and Y.M. Abd El-Latif

References

  1. [1] T. DeRose, M. Kass, & T. Truong, Subdivision surfaces in character animation, Proc. SIGGRAPH’1998, Orlando, USA, 1998, 85–94. doi:10.1159/000027570
  2. [2] Subdivision for modeling and animation, Proc. SIGGRAPH’2000 Course Notes, New Orleans, LA, USA.
  3. [3] M. Sabin, Subdivision: Tutorial notes, IEEE Shape Modeling and Applications Int. Conf. (SMI’2001), Genova, Italy, May 2001.
  4. [4] E. Catmull & J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Computer Aided Design, 10(6), 1978, 350–355. doi:10.1016/0010-4485(78)90110-0
  5. [5] D. Doo & M. Sabin, Analysis of the behavior of recursive division surfaces near extraordinary points, Computer Aided Design, 10(6), 1978, 356–360. doi:10.1016/0010-4485(78)90111-2
  6. [6] C. Loop, Smooth subdivision surfaces based on triangles, master’s thesis, University of Utah, US, 1987.
  7. [7] N. Dyne, D. Levin, & J. Gregory, A butterfly subdivision scheme for surface interpolation with tension control, ACM Trans. on Graphics, 9 (2), 1990, 160–169. doi:10.1145/78956.78958
  8. [8] D. Zorin, P. Schroder, & W. Sweldens, Interpolating subdivision for meshes with arbitrary topology, Proc. SIGGRAPH’1996, New Orleans, LA, USA, 1996, 189–192. doi:10.1145/237170.237254
  9. [9] A. Levin, Interpolating nets of curves by smooth subdivision surfaces, Proc. SIGGRAPH’1999, Los Angeles, CA, USA, 1999, 57–64. doi:10.1145/311535.311541
  10. [10] L. Velho, Using semi-regular 4-8 meshes for subdivision surfaces, Journal of Graphics Tools, 5(3), 2000, 35–47.
  11. [11] L. Velho & D. Zorin, 4-8 subdivision,Computer Aided Geometric Design, 16(5), 2001, 397–427. doi:10.1016/S0167-8396(01)00039-5
  12. [12] J. Peters & U. Reif, The simplest subdivision scheme for smoothing polyhedra, ACM Trans. on Graphics, 16 (4), 1997, 420–431. doi:10.1145/263834.263851
  13. [13] J. Claes, K. Beets, & V. Frank, A corner-cutting scheme for hexagonal subdivision surfaces, Proc. IEEE Shape Modeling and Applications Int. Conf., Banff, Canada, May 2002, 3–20.
  14. [14] K. Beets, J. Claes, & V. Frank, Borders, semi-sharp edges and adaptivity for hexagonal subdivision surface schemes, in J. Vince & R.A. Earnshaw (Eds.), Advances in modeling, animation and rendering (University of Bradford, England: Springer-Verlag, 2002), 151–166.
  15. [15] L. Kobbelt, Sqrt(3) Subdivision, Proc. SIGGRAPH’2000, New Orleans, LA, USA, 2000, 103–112. doi:10.1145/344779.344835
  16. [16] C. Mandal, H. Qin, & C. Vermuri, Dynamic modeling of butterfly subdivision surfaces, IEEE Trans. on Visualization and Computer Graphics, 19(3), 2000, 427–436. doi:10.1109/2945.879787
  17. [17] M. Halstead, M. Kass, & T. DeRose, Fair interpolation using Catmul-Clark surfaces, Proc. SIGGRAPH’1993, Anaheim, CA, USA, 1993, 35–44. doi:10.1145/166117.166121
  18. [18] H. Biermann, A. Levin, & D. Zorin, Piecewise smooth subdivision surfaces with normal control, Proc. SIGGRAPH’2000, New Orleans, Louisiana, USA, 2000, 113–120. doi:10.1145/344779.344841
  19. [19] A. Levin, Combined subdivision schemes for the design of surfaces satisfying boundary conditions, CAGD, 16(5), 1999, 345–354.
  20. [20] A. Nasri, Polyhedral subdivision methods for free-form surfaces, ACM Trans. on Graphics, 6(1), 1987, 29–73. doi:10.1145/27625.27628
  21. [21] A. Nasri, Interpolating meshes of boundary intersecting curves by subdivision surfaces, The Visual Computer, 16 (1), 2000, 3–14. doi:10.1007/s003710050002
  22. [22] A. Nasri, Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces, Computer Aided Design, 17(7), 2001, 753–765. doi:10.1016/S0010-4485(01)00093-8
  23. [23] T. Sederberg, J. Zheng, J. Sewell, & M. Sabin, Non-uniform recursive subdivision surfaces, Proc. SIGGRAPH’1998, Orlando, Florida, USA, 1998, 387–394. doi:10.1145/280814.280942
  24. [24] A. Vlachos, J. Peters, C. Boyed, & J. Michell, Curved PN triangles, ACM Symp. on Interactive 3D Graphics, USA, 2001, 159–166. doi:10.1145/364338.364387
  25. [25] G. Salomon, A. Leclercq, S. Akkouche, & E. Gallin, Normal control using N-adic subdivision schemes, Proc. IEEE SMI’2002 Conf., Banff, Canada, 2002, 21–28. doi:10.1109/SMI.2002.1003524
  26. [26] T.W. Sederberg, J. Zheng, A. Bakenov, & A. Nasri, T-splines & T-NURCCs, ACM Trans. on Graphics, 22 (3), 2003, 477–484. doi:10.1145/882262.882295
  27. [27] M. El-Zahar, F. Ghaleb, H. Hussein Karam, & Y. Abd El-Latif, A novel optimized subdivision algorithm for modeling and animation, IASTED Int. Conf. on Modelling and Simulation (MS’2004), Marina del Rey, USA, 2004, 436–441.
  28. [28] G.M. Chaikin, An algorithm for high-speed curve generation, CG and IP, Computer Graphics and Image Processing, 1974, 346–349.
  29. [29] A. Habib & J. Warren, Edge and vertex insertion for a class c1 subdivision surface, Computer Aided Geometric Design, 16 (4), 1999, 223–247. doi:10.1016/S0167-8396(98)00045-4
  30. [30] H. Biermann, D. Zorin, I. Martin & F. Bernardini, Sharp features on multi-resolution subdivision surfaces, IEEE Pacific Graphics Int. Conf., Tokyo, Japan, 2001, 140–149.
  31. [31] H. Hussein Karam, A. Bastanfard, & M. Nakajima, A novel multi-resolution anthropometrical algorithm for realistic simulation and manipulation of facial appearance, in J. Vince & R.A. Earnshaw (Eds.), Advances in Modeling, Animation and Rendering (University of Bradford, England: Springer-Verlag, 2002), 315–331. 175
  32. [32] I. Guskov, W. Sweldens, & P. Schroder, Multi-resolution signal processing for meshes, Proc. SIGGRAPH’99, Los Angeles, CA, USA, 1999, 325–334. doi:10.1145/311535.311577

Important Links:

Go Back