SIMULATION OF FRACTAL DIMENSION EVALUATIONS

G.M. Behery

References

  1. [1] B.B. Mandlbrot, The fractal geometry of nature (San Francisco, USA: Freeman, 1981).
  2. [2] H.-O. Peitgen, H. Jügens, & D. Saupe, Chaos and fractals (New York: Springer Verlag, 1992).
  3. [3] H.-O. Peitgen & D. Saupe, The science of fractal image (New York: Springer-Verlag, 1985).
  4. [4] C.O. Kiselman, Regularity properties of distance transformations in image analysis, Computer Vision and Image Understanding, 64 (1), 1996, 290–298.
  5. [5] A.P. Pentland, Fractal-based description of natural scenes, IEEE Transaction on Pattern Analysis and Machine Intelligence, 6 (6), 1984, 661–674.
  6. [6] J.-F. Gouyet, Physics and fractal structure (New York: Springer Verlag, 1996).
  7. [7] M.F. Barnsley, Fractals everywhere (San Diego, CA: Academic Press Inc., 1991).
  8. [8] D. Stoyan & H. Stoyan, Fractals random shapes and point fields methods of geometrical statistic (New York: John Wiley & Sons, 1994).
  9. [9] N. Sarkar & B.B. Chaudhuri, An efficient approach to estimate fractal dimension of textural images, Pattern Recognition, 25 (9), 1992, 1015–1042. doi:10.1016/0031-3203(92)90066-R
  10. [10] P. Corsini & G. Frsini, Properties of the multidimensional generalized distance Fourier transform, IEEE Transaction on Computers, c-28 (11), 1979, 819–830. doi:10.1109/TC.1979.1675262
  11. [11] M. Sid-Ahmad, Digital image processing (New York: McGraw Hill Inc., 1996).
  12. [12] R.C. Gonzalez & P. Wintz, Digital image processing (Reading, MA: Addison-Wesley, 1987).
  13. [13] R.C. Gonzalez & P. Wintz, Digital image processing, 2nd ed. (Reading, MA: Addison-Wesley, 1991).
  14. [14] P.P Ohanion & R.C. Dubes, Performance evaluation for four classes of texture feature, Pattern Recognition, 25 (8), 1992, 811–819.
  15. [15] M. Fialany, K.A. Blanton, Real-world fractals (New York: M&T-Books, 1991).

Important Links:

Go Back