A MODEL OF ELECTRICAL CONTACTS WITH ADVANCED DEGRADATION

C.G. Aronis, C.S. Psomopoulos, C.G. Karagiannopoulos, and P.D. Bourkas

References

  1. [1] C.H. Flurscheim, Power circuit breaker: Theory and design (London: IEE Power Eng. Series 1, 1985).
  2. [2] R. Holm, Electric contacts: Theory and applications, 4th ed. (Berlin: Springer-Verlag, 1979).
  3. [3] E. Philippow, Taschenbuch Elektotechnik, Band 2: Starkstromtechnik (Berlin: VEB Verlag Technik, 1966).
  4. [4] P.D. Bourkas, E.A. Kayafas, & A.V. Machias, Specified current in emergency load switches, IEE Proc. Pt. C, 135(4), 1988, 330–335.
  5. [5] P.D. Bourkas, A.V. Machias, I.A. Stathopoulos, & F.V. Topalis, Medium voltage switches design for industrial applications, Journal of Energy Systems, 12, 1992, 45–49.
  6. [6] C.G. Karagiannopoulos, P.D. Bourkas, C.T. Dervos, & C.A. Kagarakis, Physical interpretations concerning non-linear conductivity phenomena across no-load switching contacts, IEEE Trans. Components, Hybrids and Manufacture Technology, 14(1), 1991, 137–141. doi:10.1109/33.76523
  7. [7] C.G. Karagiannopoulos, C.S. Psomopoulos, & P.D. Bourkas, A theoretic and experimental investigation in stationary electric contacts, Modeling and Simulation in Material Science and Engineering, 9, 2001, 181–192. doi:10.1088/0965-0393/9/3/305
  8. [8] H.W. Hermance & T.F. Egan, Organic deposits on precious metal contacts, Bell Systems Technologies, 37, 1958, 739.
  9. [9] VDE 0660/4, 62, Regeln fur Schaltgerate bis 1000 V Wechselspannung (fur Steuerschalter bis 10 kV Wechselspannung) und 3000 V Gleichspannung.
  10. [10] S.M. Sze, Physics of semiconductor devices, 2nd ed. (New York: Wiley, 1981).
  11. [11] R. Holm, The electric tunnel effect across thin insulator films in contacts, Journal of Applied Physics, 22, 1951, 569. doi:10.1063/1.1700008
  12. [12] Z. Hurych, Influence of non-uniform thickness of dielectric layers on capacitive and tunnel currents, Solid State Electronics, 9, 1966, 967. doi:10.1016/0038-1101(66)90073-6
  13. [13] J.C. Fischer & I. Giaver, Tunnelling through thin insulating layers, Journal of Applied Physics, 32, 1961, 172. doi:10.1063/1.1735973
  14. [14] M. Artaki, Hot-electron flow in an inhomogeneous field, Applied Physics Letters, 52(2), 1988, 141. doi:10.1063/1.99031
  15. [15] C. Kittel, Solid state physics, 5th ed. (New York: J. Wiley and Sons, 1976).
  16. [16] D.K. Roy, Quantum mechanical tunnelling and its applications (Singapore: World Scientific, 1989).
  17. [17] J.G. Simmons, Generalised formula for the electric tunnel effect between similar electrodes separated by thin insulating film, Journal of Applied Physics, 34(6), 1963, 1793. doi:10.1063/1.1702682
  18. [18] H.M. Rosenberg, The solid state, 3rd ed. (Oxford: Oxford Science Publications, 1988).
  19. [19] B.K. Ridley, Specific negative resistance in solids, Proc. Physical Society, 82, 1963, 954. doi:10.1088/0370-1328/82/6/315
  20. [20] H.V. Ku, F.G. Ullman, Capacitance of thin dielectric structures, Journal of Applied Physics, 35, 1964, 265. 173 Appendix 1 Figure 6: Figure 7: i0 = 197 A i0 = 212 A εr = 2.57 εr = 2.5 ω = 2πf = 314 s−1 ω = 2πf = 314 s−1 S = 45 ˚A S = 50 ˚A A0 = 1 cm2 A0 = 1 cm2 R = ∞ Ω R = ∞ Ω φ0 = 0.4 eV φ0 = 0.35 eV C = 0.2 F C = 0.3 F L = 10−7 H L = 10−8 H doi:10.1063/1.1713297

Important Links:

Go Back