INFLUENCE OF PROCESS PARAMETERS DURING WATER COOLING AT RUN-OUT TABLE

S. Sikdar and A. Mukhopadhayay

References

  1. [1] W.K. Soh & W.Y.D Yuen, Flow visualization of the boiling heat transfer at the run-out table, 41st Mechanical Working and Steel Processing Conf. Proc., Baltimore, 1999, 707–715.
  2. [2] V.H. Hernandez, I.V. Samarasekera, & J.K. Brimacombe, Heat transfer model of run-out table cooling: A fundamental approach, 36th Mechanical Working and Steel Processing Conf. Proc., Baltimore, 1995, 345–356.
  3. [3] I.V. Samarasekera, D.Q. Jin, & J.K. Brimacombe, The application of micro structural engineering to the hot rolling of steel, 38th Mechanical Working and Steel Processing Conf. Proc., Cleveland, 1997, 313–327.
  4. [4] J. Filipovic, R. Viskanta, F.P. Incropera, & T.A. Veslocki, Cooling of a moving steel strip by an array of round jets, 35th Mechanical Working and Steel Processing Conf. Proc., Pittsburgh, 1994, 317–327.
  5. [5] D. Auzinger, M. Pfaffermayr, R. Pichler, & B. Schlegl, Advanced process model for today’s hot strip mill, Proc. of National Conf. on Flat Products, Indian Institute of Metals, Jamshedpur, India, 1994, 101–115.
  6. [6] J.F. Evans, I.D. Roebuck, & H.R. Watkins, Numerical modelling of hot strip mill run out table cooling, Iron and Steel Engineer, 70(1), 1993, 50–55.
  7. [7] R.M. Guo, Heat transfer of laminar flow cooling during strip acceleration on hot strip mill run out tables, Iron and Steel Maker, 8, 1993, 49–59.
  8. [8] K. Yahiro, J. Yamasaki, M. Furukawa, K. Arai, M. Morita, & M. Obashi, Development of coiling temperature control system on hot strip mill, Kawasaki Steel Technical Report, 24, 1991, 32–40.
  9. [9] P.C. Campbell, E.B. Hawbolt, & J.K. Brimacombe, Microstructural engineering applied to the controlled cooling of steel wire rod: Part 3: Mathematical model-formulation and predictions, Metallurgical and Materials Trans. A, 22, 1991, 2791–2805. doi:10.1007/BF02851373
  10. [10] G. Thomas, D. Vercruyssen, M. Poppe, & J. Mulder, A combined feedforward-feedback computer system for hot strip mill, Centre de Recherches Metallurgique (CRM) Metallurgical Report, 52, 1978, 17–23.
  11. [11] D.A. Zumbrunnen, R. Viskanta, & F.P. Incropera, The effect of surface motion on forced convection film boiling heat transfer, Journal of Heat Transfer, 111, 1989, 760–766.
  12. [12] S. Nukiyama, The maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure, International Journal of Heat Mass Transfer, 9, 1966, 1419–1433. [Translated from Journal of Japanese Society of Mechanical Engineers, 37, 1934, 367–374.)
  13. [13] F.P. Incropera & D.P. Dewitt, Fundamentals of heat and mass transfer, 3rd ed. (New York: John Wiley & Sons, 1990), 592.
  14. [14] S. Sikdar & A. Mukhopadhyay, Numerical simulation to determine the heat transfer coefficient in the boiling phenomenon of run-out table of a hot strip mill, Proc. of the ASME/JSME Joint Fluids Engineering Conf., Honolulu, Hawii, USA, 2 C, paper no. FEDSM 2003-45444, 2197–2210.
  15. [15] A. Mukhopadhyay, S. Sikdar, & S. Sen, An on-line model to calculate the strip temperature at run-out table of Tisco’s Hot Strip Mill, Proc. 2003 ASME Summer Heat Transfer Conf., Las Vegas, Nevada, USA, 2003, paper no. HT2003-40387, 517–529.
  16. [16] R.M. Guo, Numerical solutions for non-symmetric run out table cooling, Kline Publishing, World Steel Review, summer 1991, 42–59.
  17. [17] Z.D. Liu, D. Fraser, & I.V. Samarasekera, Experimental study and calculation of boiling heat transfer on steel plates during run-out table operation, Canadian Metallurgical Quarterly, 41(1), 2002, 63–74.
  18. [18] N. Hatta & H. Osakabe, Numerical modelling for cooling process of a moving hot plate by a laminar water curtain, ISIJ International, 29(11), 1989, 919–925. 235 doi:10.2355/isijinternational.29.919

Important Links:

Go Back