COMPARISION OF MULTIVARIABLE CONTROLLERS FOR NON-MINIMUM PHASE SYSTEMS

P. Dinesh Sankar Reddy, M. Pandit, and M. Chidambaram

References

  1. [1] S. Skogestad & I. Postlethwaite, Multivariable feedback control (NewYork: John Wiley, 1996).
  2. [2] M. Morari, E. Zafirio, & B.R. Holt, Design of resilient processing plants: New characterization of the effect of RHP zeros, Chemical Engineering Science, 40, 1987, 2425–2428. doi:10.1016/0009-2509(87)80115-X
  3. [3] Q.-Z. Wang, Y. Zhang, & M.-S. Chiu, Decoupling internal model control for multivariable systems with multiple time delays, Chemical Engineering Science, 57, 2002, 115–124. doi:10.1016/S0009-2509(01)00365-7
  4. [4] K.H. Rosenbrock, The control of distillation columns, Trans. Institute of Chemical Engineers, 40, 1962, 35–40.
  5. [5] G. Szita & C.K. Sanathanan, A model matching approach for designing decentralized MIMO controllers, Journal of the Franklin Institute, 337, 2000, 641–660. doi:10.1016/S0016-0032(00)00035-1
  6. [6] A. Pomerleau, D. Hodouin, A. Desbiens, & E. Gagnon, A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers, Powder Technology, 108, 2000, 103–115. doi:10.1016/S0032-5910(99)00207-7
  7. [7] E.J. Davison, Multivariable tuning regulators: The feed forward and robust control of general servo mechanism problem, IEEE Trans. on Automatic Control, AC-21, 1976, 35–41. doi:10.1109/TAC.1976.1101126
  8. [8] G.P. Rangaiah & P.R. Krihnaswamy, Estimating second-order plus dead time model parameters, Ind. & Engineering Chemistry Research, 33, 1994, 1867–1871. doi:10.1021/ie00031a029
  9. [9] G. Stephanopoulos, Chemical process control (Englewood Cliffs, NJ: Prentice-Hall, 1984).
  10. [10] J.S. Lin, S.S. Jang, S.S. Shieh, & M.M. Subramaniam, Generalized multivariable dynamic artificial neural network modeling for chemical processes, Ind. Eng. Chem., 38, 1999, 4700–4711. doi:10.1021/ie990312e
  11. [11] P.M. Frank, Entwurf von Regelkreisen mit Vorgeschrieben Verhalten (Karlsruhe: G. Braun, 1974).
  12. [12] K.H. Johansson, The quadruple tank process: A multivariable laboratory process with an adjustable zero, IEEE Trans. on Control Systems Technology, CST -8, 2000, 456–465. doi:10.1109/87.845876

Important Links:

Go Back