FEEDBACK STABILIZATION OF NONHOLONOMIC INTEGRATOR (BROCKETT’S SYSTEM)

Fazal-ur-Rehman and N. Ahmed

References

  1. [1] R.W. Brockett, Asymptotic stability and feedback stabilization, in R.W. Brockett, R.S. Millman, & H.J. Sussman (eds.), 249 Differential geometric control theory (Boston: Birkhauser, 1983), 181–191.
  2. [2] I. Kolmanovsky & N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems Magazine, 15, 1995, 20–36. doi:10.1109/37.476384
  3. [3] J.B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters, 18, 1992, 147–158. doi:10.1016/0167-6911(92)90019-O
  4. [4] C. Samson, Control of chained systems: Application to path following and time-varying point-stabilization of mobile robots, IEEE Trans. on Automatic Control, 40 (1), 1995, 64–77. doi:10.1109/9.362899
  5. [5] A. Astolfi, Discontinuous control of the Brockett integrator, European Journal of Control, 4 (1), 1998, 49–63.
  6. [6] P. Lucibello & G. Oriolo, Robust stabilization via iterative state steering with application to chained-form systems, Automatica, 37 (1), 2001, 71–79. doi:10.1016/S0005-1098(00)00124-2
  7. [7] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. on Automatic Control, 43 (4), 1998, 475–482. doi:10.1109/9.664150
  8. [8] J. Wei & E. Norman, On global representations of the solutions of linear differential equations as a product of exponentials, Proc. American Mathematical Society, 1964, 327–334. doi:10.2307/2034065
  9. [9] H.J. Sussmann, A general theorem on local controllability, SIAM Journal of Control and Optimization, 25 (1), 1987, 158–194. doi:10.1137/0325011

Important Links:

Go Back