UNCONFINED E-HEALTHCARE SYSTEM USING UMTS-WLAN

H. Qu, Q. Cheng, and E. Yaprak

References

  1. [1] Habib Istepanian, Modelling of GSM-based mobile telemedical system, Proc. 20th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 20 (3), Hongkong, China, 1998, 1166–1169.
  2. [2] X. Luo & Q. Cheng, Unconfined mobile bluetooth nursing and daily data collection, IEEE Communication and Networking Conf. (CCNC 2004), Las Vegas, NV, 2004, 693–696.
  3. [3] C. Kugean, S.M. Krishnan, O. Chutatape, S. Swaminathan, N. Srinivasan, & P. Wang, Design of a mobile telemedicine system with wireless LAN, Asia-Pacific Conf. on Circuits and Systems (APCCAS ’02), Vol. 1, Denpasar, Bali-Indonesia, 2002, 313–316. doi:10.1109/APCCAS.2002.1114960
  4. [4] A.A. Aziz & R. Besar, Application of mobile phone in medical image transmission, 4th National Conf. on Telecommunication Technology Proc., Shah Alam, Malaysia, 2003, 80–83. doi:10.1109/NCTT.2003.1188307
  5. [5] J. Lopez, J.M. Barcelo, N. Van den Wijngaert, & C. Blondia, Handoff latency performance for the loosely coupled GPRSWLAN architecture, DAC Technical Report, Academic OPNET Research and Educations Projects, UPC-DAC-2004-4, 2004.
  6. [6] H. Holma & A. Toskala, WCDMA for UMTS radio access for third generation mobile communications, Wiley Technology Publishing, John Wiley & Sons, 1st edition, ISBN 0471720518, June 7, 2000.
  7. [7] J. Scot Ransbottom, T. Mann, & N.J. Davis IV, Evaluation of signaling mechanisms to incorporate wireless LAN “hotspots into 3G/4G mobile systems, OPNETWORK 2002 Conf., Washington DC, August 26–30, 2002.
  8. [8] LAN MAN Standards Committee of the IEEE Computer Society, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications ANSI/IEEE Std 802.11b, 2000.
  9. [9] S.L. Tsao & C.C. Lin, Design and evaluation of UMTS-WLAN interworking strategies, Vehicular Technology Conf. Proc. VTC 2002—Fall, IEEE 56th, Vol. 2, Vancouver, Canada, 2002, 777–781. doi:10.1109/VETECF.2002.1040705
  10. [10] http://www.umtsworld.com/technology/security.htm.
  11. [11] 3rd Generation Partnership Project, Technical Specification Group Services and System Aspects, 3G Security; Security Architecture (Release 4), 3GPP TS 33.102 V4.2.0, September 2001.
  12. [12] S. Weatherspoon, Overview of IEEE 802.11b security, Network Communications Group, Intel Technology Journal Q2, 2000, 1–5.
  13. [13] N. Borisov, Wireless privacy: Analysis of 802.11 security, class notes, University of California–Berkeley, http://www.isaac.cs. berkeley.edu/isaac/wep-faq.html.
  14. [14] http://www.wi-fi.org/OpenSection/protected_access.asp.
  15. [15] T.L. Mann, A network system level simulator for investigating the interworking of Wireless LAN and 3G mobile systems, master’s thesis, Virginia Polytechnic State University, Blacksburg, VA, 2003.
  16. [16] M. Despotvic, N. JapundzicZigon, & D. Bajic, Electrocardiogram (ECG) signal compression techniques, Annals of the Academy of Studenica, 4/2001, UDC: 616.12-073.97:616.12001.35.
  17. [17] G. Nave & A. Cohen, ECG compression using long term prediction, IEEE Trans. on Biomedical Engineering, 40 (9), 1993, 877–885. doi:10.1109/10.245608
  18. [18] H. Lee & K.M. Buckley, ECG data compression using cut and align beats approach and 2-D transforms, IEEE Trans. on Biomedical Engineering, 46 (5), May 1999, 556–564. doi:10.1109/10.759056
  19. [19] P.K. Kulkarni, V. Kumar, & H.K Verma, Diagnostic acceptability of FFT-based ECG data compression, Journal of Medical Engineering and Technology, 21 (5), 1997, 185–189.
  20. [20] P.K. Kulkarni, V. Kumar, & H.K. Verma, ECG data compression using fast Walsh transform and its clinical acceptability, International Journal of Systems Science, 28 (8), 1997, 831–836. 269 doi:10.1080/00207729708929443
  21. [21] J. Chen & S. Itoh, A wavelet transform-based ECG compression method guaranteeing desired signal quality, IEEE Trans. on Biomedical Engineering, 45 (12), 1998, 1414–1419. doi:10.1109/10.730435

Important Links:

Go Back