STATE-DEPENDENT STEERING CONTROL FOR NONHOLONOMIC CONTROL SYSTEMS: A FIRE TRUCK EXAMPLE

Fazal-ur-Rehman

References

  1. [1] R.W. Brockett, R.S. Millman, & H.J. Sussman (Eds.), Asymptotic stability and feedback stabilization: Differential geometric control theory (Boston: Birkhauser, 1983), 181–191.
  2. [2] I. Kolmanovsky & N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems Magazine, 15 (6), 1995, 20–36. doi:10.1109/37.476384
  3. [3] A.P. Aguiar, Nonlinear motion control of nonholonomic and underactuated systems, doctoral diss., Department of Electrical Engineering, Instituto Superior Tecnico, IST, Lisbon, Portugal, 2002.
  4. [4] F. Alonge, F. D’Ippolito, & F. Raimondi, Trajectory tracking of underactuated underwater vehicles, Proc. 40th IEEE Conf. on Decision and Control, 5, Orlando, FL, December 2001, 4421–4426. doi:10.1109/CDC.2001.980898
  5. [5] A. Behal, D. Dawson, W. Dixon, & Y. Fang, Tracking and regulation control of an underactuated surface vessel with 342 nonintegrable dynamics, IEEE Trans. on Automatic Control, 47 (3), 2002, 495–500. doi:10.1109/9.989148
  6. [6] L. Bushnell, D. Tilbury, & S.S. Sastry, Steering three input chained form nonholonomic systems using sinusoid: The fire truck example, European Control Conf., Groningen, The Netherlands, June 1993, 1432–1437.
  7. [7] P. Morin & C. Samson, Control of nonlinear chained systems: From the Routh-Hurwitz stability criterion to time-varying exponential stabilizers, IEEE Trans. on Automatic Control, 45 (1), 2000, 141–146. doi:10.1109/9.827372
  8. [8] J.B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters, 18, 1992, 147–158. doi:10.1016/0167-6911(92)90019-O
  9. [9] A. Astolfi, Discontinuous control of the Brockett integrator, European Journal of Control, 4 (1), 1998, 49–63.
  10. [10] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. on Automatic Control, 43 (4), 1998, 475–482. doi:10.1109/9.664150
  11. [11] C. Canudas de Wit & H. Berghuis, Practical stabilization of nonlinear systems in chained form, Proc. 33rd IEEE Conf. on Decision and Control, Orlando, FL, December 1994, 3475– 3479. doi:10.1109/CDC.1994.411684
  12. [12] J.M. Godhavn & O. Egeland, A Lyapunov approach to exponential stabilization of nonholonomic systems in power form, IEEE Trans. on Automatic Control, 42 (7), 1997, 1028–1032. doi:10.1109/9.599989
  13. [13] P. Lucibello & G. Oriolo, Robust stabilization via iterative state steering with application to chained-form systems, Automatica, 37 (1), 2001, 71–79. doi:10.1016/S0005-1098(00)00124-2
  14. [14] M. Vendittelli & G. Oriolo, Stabilization of the general two trailer system, Proc. 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, 2000, 1817–1823. doi:10.1109/ROBOT.2000.844859
  15. [15] J. Guldner & V.I. Utkin, Stabilization of nonholonomic mobile robots using Lyapunov functions for navigation and sliding mode control, 33rd IEEE Conf. on Decision and Control, Orlando, FL, December 1994, 2967–2972. doi:10.1109/CDC.1994.411340
  16. [16] H. Ye, A.N. Michel, & L. Hou, Stability theory for hybrid dynamical systems, IEEE Trans. on Automatic Control, 43 (4), 1998, 461–474. doi:10.1109/9.664149
  17. [17] R.M. Murray, Z. Li, & S.S. Sastry, A mathematical introduction to robotic manipulation (Boca Raton, Florida: CRC Press LLC, 1994).
  18. [18] R.M. Murray & S.S. Sastary, Nonholonomic motion planning, IEEE Trans. on Automatic Control, 38 (5), 1993, 700–716. doi:10.1109/9.277235

Important Links:

Go Back