PREDICTION OF COMPRESSIVE CREEP AND RELAXATION OF HDPE

R. Elleuch and W. Taktak

References

  1. [1] H. Nakayazu, H. Markovitz, & D.J. Plazek, The frequency and temperature dependence of the dynamic mechanical properties of a high density polyethylene, Trans. Society of Rheology, 5, 1961, 261–269. doi:10.1122/1.548899
  2. [2] J. Malik, K.H. Stoll, D. Cabaton, & A. Thürmer, Processing stabilization of HDPE: A complex study of an additive package, Polymer Degradation and Stability, 50, 1995, 329–336. doi:10.1016/0141-3910(95)00165-4
  3. [3] M. Kostadinova-Loutcheva, M. Proietto, N. Jilov, & F.P. La Mantia, Recycling of high density polyethylene containers, Polymer Degradation and Stability, 57, 1997, 77–81. doi:10.1016/S0141-3910(96)00230-3
  4. [4] J. Kolarik, A. Pegoretti, L. Fambri, & A. Penati, Prediction of nonlinear long-term tensile creep of heterogeneous blends: Rubber-toughened polypropylene-poly(styrene-coacrylonitrile), Journal of Applied Polymers Science, 88, 2003, 641–651. doi:10.1002/app.11586
  5. [5] E.A. Akinay, W. Brostow, & R. Maksimov, Prediction of longterm service performance of polymeric materials from shortterm tests: Creep and prediction of stress shift factor of a longitudinal polymer liquid crystal, Polymer Engineering and Science, 41(6), 2001, 977–981. doi:10.1002/pen.10798
  6. [6] J.G.J. Beijer & J.L. Spoormaker, Solution strategies for FEM analysis with nonlinear viscoelastic polymers, Computers & Structures, 80, 2002, 1213–1229. doi:10.1016/S0045-7949(02)00089-5
  7. [7] A.D. Drozdov &. A.L. Dorfmann, The effect of annealing temperature on the viscoelastic response of glassy polymers, Mechanics Research Communications, 28(4), 2001, 355–362.
  8. [8] A.D. Drozdov, A model for the viscoelastic and viscoplastic responses of glassy polymers, International Journal of Solids and Structures, 38, 2001, 8285–8304. doi:10.1016/S0020-7683(01)00146-9
  9. [9] A. Hernández-Jiménez, J. Hernández-Santiago, A. MaciasGarcía, & J. Sánchez-González, Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model, Polymer Testing, 21, 2001, 325–331. doi:10.1016/S0142-9418(01)00092-7
  10. [10] I. Podlubny, Fractional differential equations (San Diego: Academic Press, 1999).
  11. [11] PE. Rousse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, Journal of Chemistry Physics, 21, 1953, 1272–1279. doi:10.1063/1.1699180
  12. [12] M. Yoshihara & R. Work, Dielectric relaxation spectrum of undiluted poly(4-chorostyrene), t > tg, Journal of Chemistry Physics, 72, 1980, 5909–5914. doi:10.1063/1.439087
  13. [13] M. Sterm & A.V. Tobolsky, Stress-time-temperature relation in polysulfide rubbers, Journal of Chemistry Physics, 14, 1995, 93–100. doi:10.1063/1.1724110
  14. [14] W.N. Findley, J.S Lai, & K. Onaram, Creep and relaxation of nonlinear viscoelastic materials (New York: Dover, 1989).
  15. [15] T.A. Tervoort, E.T.J. Klomppen, & L.E.A. Govaert, Multimode approach to finite, nonlinear viscoelastic behavior of polymers glasses, Journal of Rheology, 40, 1996, 779–791. doi:10.1122/1.550755
  16. [16] E.T.J. Klomppen, Deformation behavior of glassy polymers: Consequences of thermorheological complex behavior, vol. 3 (Eindhoven: Stan Ackermans Instituut, 1996).
  17. [17] J.G.J. Beijer & J.L. Spoormaker, Modelling of creep behaviour in injection-moulded HDPE, Polymer, 41(14), 2000, 5443– 5449. doi:10.1016/S0032-3861(99)00753-3
  18. [18] R. Elleuch and W. Taktak, Viscoelastic behavior of HDPE polymer using tensile and compressive tests, Journal of Materials Engineering and Performance, 15(1), 2006, 111–116. doi:10.1361/105994906X83475
  19. [19] B.T. Polyak, A general method for solving extremum problems, Soviet Mathematics, 8, 1966, 593–597.

Important Links:

Go Back