SIMUUN: A SIMULATION ENVIRONMENT FOR UNDULATORY LOCOMOTION

M. Sfakiotakis and D.P. Tsakiris

References

  1. [1] S. Hirose, Biologically inspired robots: Snake-like locomotors and manipulators (New York: Oxford University Press, 1993).
  2. [2] S. Hirose & E.F. Fukushima, Snakes and strings: New robotic components for rescue operations, International Journal of Robotics Research, 23(4/5), 2004, 341–349. doi:10.1177/0278364904042202
  3. [3] J.P. Ostrowski & J. Burdick, The geometric mechanics of undulatory robotic locomotion, International Journal of Robotics Research, 17(7), 1998, 683–701. doi:10.1177/027836499801700701
  4. [4] S. Ma, H. Araya, & L. Li, Development of a creeping locomotion snake-robot, International Journal of Robotics and Automation, 17(4), 2002, 146–153.
  5. [5] P.S. Krishnaprasad & D.P. Tsakiris, Oscillations, SE(2)-snakes and motion control: A study of the roller racer, Dynamical Systems, 16(4), 2001, 347–397. doi:10.1080/14689360110090424
  6. [6] M. Saito, M. Fukaya, & T. Iwasaki, Modeling, analysis, and synthesis of serpentine locomotion with a multilink robotic snake, IEEE Control Systems Magazine, 22(1), 2002, 64–81. doi:10.1109/37.980248
  7. [7] L. Chen, S. Wang, S. Ma, & B. Li, Analysis of traveling wave locomotion of snake robot, Proc. IEEE Int. Conf. on Robotics, Intelligent Systems and Signal Processing (RISSP’03), Changsha, China, 2003, 365–369. doi:10.1109/RISSP.2003.1285601
  8. [8] D.P. Tsakiris, A. Menciassi, M. Sfakiotakis, G. La Spina, & P. Dario, Undulatory locomotion of polychaete annelids: Mechanics, neural control and robotic prototypes, paper presented at the Annual Computational Neuroscience Meeting (CNS*2004), Baltimore, USA, 2004.
  9. [9] D.P. Tsakiris, M. Sfakiotakis, A. Menciassi, G. La Spina, & P. Dario, Polychaete-like undulatory robotic locomotion, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’05), Barcelona, Spain, 2005, 3029–3034.
  10. [10] K.A. McIsaac & J.P. Ostrowski, Motion planning for anguilliform locomotion, IEEE Journal of Robotics and Automation, 19 (4), 2003, 637–652. doi:10.1109/TRA.2003.814495
  11. [11] C. Wilbur, W. Vorus, Y. Cao, & S.N. Currie, A lamprey-based undulatory vehicle, in J. Ayers, J. Davis, & A. Rudolph (Eds.), Neurotechnology for Biomimetic Robots (Cambridge, London: Bradford/Mit Press, 2002).
  12. [12] The MathWorks Inc., Using Simulink—version 5, 2003.
  13. [13] A.J. Ijspeert, A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander, Biological Cybernetics, 85 (5), 2001, 331–348. doi:10.1007/s004220000211
  14. [14] B. Webb, Robots in invertebrate neuroscience, Nature, 417, 2002, 359–363. doi:10.1038/417359a
  15. [15] G.D. Wood & D.C. Kennedy, Simulating mechanical systems in Simulink with SimMechanics, technical report, The MathWorks Inc., 2003.
  16. [16] H. Olsson, K.J. ˚Aström, C.C. de Wit, M. Gä fvert, & P. Lischinsky, Friction models and friction compensation, European Journal of Control, 29(4), 1998, 176–195.
  17. [17] G. Taylor, Analysis of the swimming of long and narrow animals, Proc. of the Royal Society (A), 214, 1952, 158–183. doi:10.1098/rspa.1952.0159
  18. [18] Ö. Ekeberg & S. Grillner, Simulations of neuromuscular control in lamprey swimming, Philosophical Transactions of the Royal Society of London Series B, 354(1385), 1999, 895–902. doi:10.1098/rstb.1999.0441
  19. [19] M. Sfakiotakis, D.M. Lane, & J.B.C. Davies, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24(2), 1999, 237–252. doi:10.1109/48.757275
  20. [20] J. Lighthill, Hydromechanics of aquatic animal propulsion: A survey, Mathematical Biofluiddynamics (Philadelphia: SIAM Press), 11–44. 357
  21. [21] K. D’Aout & P. Aerts, A kinematic comparison of forward and backward swimming in the eel Anguilla anguilla, Journal of Experimental Biology, 202(11), 1999, 1511–1521.
  22. [22] R.B. Clark & D.J. Tritton, Swimming mechanisms in nereidiform polychaetes, Journal of Zoology, 161, 1970, 257–271.
  23. [23] M. Sfakiotakis & D.P. Tsakiris, SIMUUN: A simulation environment for undulatory locomotion, technical report TR-343, Institute of Computer Science, FORTH, 2004.
  24. [24] A. Argyros, D.P. Tsakiris, & C. Groyer, Biomimetic centering behavior for mobile robots with panoramic sensors, IEEE Robotics and Automation Magazine, 11(4), 2004, 347–397. doi:10.1109/MRA.2004.1371612

Important Links:

Go Back