AN INTEGRATED LOWER EXOSKELETON SYSTEM TOWARDS DESIGN OF A PORTABLE ACTIVE ORTHOTIC DEVICE

K.H. Low and Y. Yin

References

  1. [1] National Center for Health Statistics. 2003. Centers for Disease Control and Prevention. National ambulatory medical care survey.
  2. [2] American Academy of Orthopaedic Surgeons, AAOS Research Dept, Patient visits for selected conditions, http://orthoinfo. aaos.org/fact/thr_report.cfm?Thread_ID=88&topcategory= Knee. \
  3. [3] United Nations. Population Division of Economic and Social Affairs. 2002. World Population Aging: 1950–2050.
  4. [4] Braus Patricia. 1998. Ages of Arthritis. Center for Disease Control.
  5. [5] Feng, P.S. 2005. Pain Management in Arthritis. The Pain Association of Singapore: IASP Chapter, Issue 1.
  6. [6] C. Mavroidis et al. Smart Portable Rehabilitation Devices, Journal of NeuroEngineering and Rehabilitation, 2(18), 2005.
  7. [7] Mill Valley Racing, Racer sponsorships team rules and bylaws, http://www.mvextreme.com/health.htm.
  8. [8] Droitwich Knee Clinic, Acute Injuries and their Management, www.kneeclinics.co.uk/html/Acute%20Injuries.htm.
  9. [9] Epinions, Inc. 2006. Don Joy Legend SE-4 Knee Brace. www.epinions.com/Don_Joy_Legend_SE-4_Knee_Brace [2006, January 20].
  10. [10] WBUR 2006, The anti-aging pill, www.theconnection.org/.../ 01/20040106_b_main.asp.
  11. [11] Science Fiction in the News. 2005. AKROD v2 Active Knee Rehabilitation Device Human Trials, http://www. technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=455 [2006, February 01].
  12. [12] Yobotics, RoboWalker, http://yobotics.com/robowalker/ robowalker.html.
  13. [13] IEEE Spectrum, The Rise of the Body Bots, http://www. spectrum.ieee.org/print/1901.
  14. [14] Cybernics Laboratory, University of Tsukuba, Robot Suit HAL, http://sanlab.kz.tsukuba.ac.jp/HAL/indexE.html.
  15. [15] Berkeley Robotics and Human Engineering Laboratory, http://bleex.me.berkeley.edu/bleex.htm.
  16. [16] S. Yang, Researchers developing robotic devices that can human strength and endurance, UC Berkeley, USA, 2004.
  17. [17] Hocoma AD Medical Engineering, 2005, Lokomat System, http://www.hocoma.ch/index.php?lang=en&page=/pages/ lokomat/lokomat_en.html.
  18. [18] K.H. Low, X. Liu & H. Yu, Development of NTU Wearable Exoskeleton System for Assistive Technologies, Proc. of 2005 IEEE Int. Conf. on Mechatronics and Automation (ICMA2005 ), Niagara Falls, Canada, 2005.
  19. [19] K.H. Low et al., Locomotion Control of a Wearable Lower Exoskeleton for Walking Enhancement, Journal of Vibrations and Control, 12, 2006, 1311–1336. doi:10.1177/1077546306070616
  20. [20] S.A. Paluska & M.D. McKeag, Knee braces: current evidence and clinical recommendations for their use, American Family Physician, 61, 2000, 411–418.
  21. [21] Lower Leg Bone Diagram, www.patient.co.uk/showdoc/ 21692493/
  22. [22] J.S. Dai, T. Zhao & C. Nester, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device, Autonomous Robots, 16(2), 2004, 207–218. doi:10.1023/B:AURO.0000016866.80026.d7
  23. [23] J. Rosen, M. Brand, M.B. Fuchs & M. Arcan, A Myosignal-based Powered Exoskeleton System, IEEE Trans. on Systems, Man, and Cybernetics, Part A, 31(3), 2001, 210–222. doi:10.1109/3468.925661
  24. [24] K. Kiguchi, T. Tanaka & T. Fukuda, Neuro-fuzzy control of a robotic exoskeleton with EMG signals, IEEE Trans. on Fuzzy Systems 12 (4), 2004, 481–490. doi:10.1109/TFUZZ.2004.832525

Important Links:

Go Back