PRUNE SUPPORT VECTOR MACHINES BY AN ITERATIVE PROCESS

Y.G. Li, W.D. Zhang, and G.L. Wang

References

  1. [1] C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2 (2), 1998, 121–167. doi:10.1023/A:1009715923555
  2. [2] N. Cristianini & J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods (Cambridge: Cambridge University Press, 2000).
  3. [3] V. Vapnik, Estimation of dependences based on empirical data (Berlin: Springer-Verlag, 1982).
  4. [4] B.S.A. Verzakov & J.V. Frese, A flexible classification approach with optimal generalization performance: Support vector machines, Chemometrics and Intelligent Laboratory System, 64, 2002, 15–25. doi:10.1016/S0169-7439(02)00046-1
  5. [5] Y. LeCun et al., Comparison of learning algorithms for hand-written digit recognition, Proc. Int. Conf. on Artificial Neural Networks, Paris, 1995, 53–60.
  6. [6] C.J.C. Burges, Simplified support vector decision rules, Proc. 13th Int. Conf. on Machine Learning, San Mateo, CA, 1996, 71–77.
  7. [7] C.J.C. Burges & B. Schölkopf, Improving the accuracy and speed of support vector machines, in M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9 (Cambridge, MA: MIT Press, 1997).
  8. [8] T. Downs, K.E. Gates, & A. Masters, Exact simplification of support vector solutions, Journal of Machine Learning Research, 2, 20001, 293–297.
  9. [9] E. Osuna & F. Girosi, Reducing the run time complexity of support vector machines, Proc. ICPR’98, Brisbane, 1998, 16–20.
  10. [10] B. Schölkopf, Support vector learning, doctoral diss., Technical University of Berlin, 1997.
  11. [11] J.A.K. Suykens, L. Lukas, & J. Vandewalle, Sparse least squares support vector machine classifiers, Proc. European Symp. of Artificial Neural Networks 2000, Bruges, 2000, 37–42.
  12. [12] I. Steinwart, Sparseness of support vector machines, Journal of Machine Learning Research, 4 (6), 2004, 1071–1106. doi:10.1162/1532443041827925
  13. [13] D.J. Newman, S. Hettich, C.L. Blake, & C.J. Merz, UCI repository of machine learning databases, University of California, Irvine, Department of Information and Computer Sciences, 1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html.
  14. [14] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, & K.R.K. Murthy, Improvements to Platt’s SMO algorithm for SVM classifier design, Neural Computation, 13, 2001, 637–649. doi:10.1162/089976601300014493
  15. [15] K.M. Lin & C.J. Lin, A study on reduced support vector machines, IEEE Trans. on Neural Networks, 14 (6), 2003, 1449–1559. doi:10.1109/TNN.2003.820828
  16. [16] T.V. Gestel et al., Benchmarking least squares support vector machine classifiers, Machine Learning, 54, 2004, 5–32. doi:10.1023/B:MACH.0000008082.80494.e0

Important Links:

Go Back