WAVELETS FOR ADAPTIVELY REFINED 3√2-SUBDIVISION MESHES

L. Linsen, B. Hamann, and K.I. Joy

References

  1. [1] L. Linsen, J.T. Gray, V. Pascucci, M.A. Duchaineau, B. Hamann, & K.I. Joy, Hierarchical large-scale volume representation with 3√2 subdivision and trivariate b-spline wavelets, in G. Brunnett, B. Hamann, H. Müller, & L. Linsen (Eds.), Geometric Modeling for Scientific Visualization (Germany: Springer-Verlag, 2004), 359–378, 483.
  2. [2] L. Linsen, V. Pascucci, M.A. Duchaineau, B. Hamann, & K.I. Joy, Hierarchical representation of time-varying volume data with 4√2 subdivision and quadrilinear b-spline wavelets, Proc. of Tenth Pacific Conf. on Computer Graphics and Applications—Pacific Graphics, 2002, Beijing, China, 346–355.
  3. [3] L. De Floriani, P. Magilla, & E. Puppo, Variant: A system for terrain modeling at variable resolution, Geoinformatica, 4(3), 287–315, 2000.
  4. [4] M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Mille, C. Aldrich, & M.B. Mineev-Weinstein, Roaming terrain: Real-time optimally adapting meshes, Proc. of IEEE Conf. on Visualization, 1997, Phoenix, AZ, 81–88.
  5. [5] H. Hoppe, Smooth view-dependent level-of-detail rendering using cached geometry, Proc. of IEEE Conf. on Visualization 1998, Research Triangle Park, NC, 35–42.
  6. [6] J. Levenberg, Fast view-dependent level-of-detail rendering using cached geometry, Proc. of IEEE Conf. on Visualization, 2002, Boston, MA, 259–265.
  7. [7] J.C. Xia & A. Varshney, Dynamic view-dependent simplification for polygonal models, Proc. of IEEE Conf. on Visualization, 1996, San Francisco, CA, 335–344.
  8. [8] H. Hoppe, View-dependent refinement of progressive meshes, Proc. of SIGGRAPH, 1997, Los Angeles, CA, 189–198.
  9. [9] P. Lindstrom, Out-of-core simplification of large polygonal models, Proc. of SIGGRAPH, 2000, New Orleans, LA, 259–262.
  10. [10] P. Lindstrom & C.T. Silva, A memory insensitive technique for large model simplification, Proc. of IEEE Conf. on Visualization, 2001, San Diego, CA, 121–126.
  11. [11] D. Luebke & C. Erikson, View-dependent simplification of arbitrary polygonal environments, Proc. of SIGGRAPH, 1997, Los Angeles, CA, 199–208.
  12. [12] J. El-Sana & E. Bachmat, Optimized view-dependent rendering for large polygonal datasets, Proc. of IEEE Conf. on Visualization, 2002, Boston, MA, 77–84.
  13. [13] M. Gavriliu, J. Carrance, D.E. Breen, & A.H. Barr, Fast extraction of adaptive multiresolution meshes with guaranteed properties from volumetric data, Proc. of IEEE Conf. on Visualization, 2001, San Diego, CA, 295–302.
  14. [14] Z.J. Wood, M. Desbrun, P. Schröder, & D. Breen, Semi-regular mesh extraction from volumes, Proc. of IEEE Conf. on Visualization, 2000, Salt Lake City, UT, 275–282.
  15. [15] B. Gregorski, M.A. Duchaineau, P. Lindstrom, V. Pascucci, & K.I. Joy, Interactive view-dependent rendering of large isosurfaces, Proc. of the IEEE Conf. on Visualization, 2002, Boston, MA, 475–482.
  16. [16] Z. Liu, A. Finkelstein, & K. Li, Progressive view-dependent isosurface propagation, Proc. of the Joint Eurographics—IEEE TCVG Symp. on Visualization (VisSym-01), 2001, Ascona, Switzerland, 223–232.
  17. [17] Y. Livnat & C. Hansen, View-dependent isosurface extraction, Proc. of IEEE Conf. on Visualization, 1998, Research Triangle Park, NC, 175–180.
  18. [18] V. Ramachandran, X. Zhang, & C. Bajaj, Parallel and out-of-core view-dependent isocontour visualization. Proc. of the Joint Eurographics—IEEE TCVG Symp. on Visualization (VisSym-02), Aire-le-Ville, Switzerland, 2002, 9–18.
  19. [19] L. Lippert, M.H. Gross, & C. Kurmann, Compression domain volume rendering for distributed environments, Proc. of the Eurographics ’97, 1997, Budapest, Hungary, 95–107.
  20. [20] D. Maegher, Geometric modeling using octree encoding, Computer Graphics and Image Processing, 19, 1982, 129–147. doi:10.1016/0146-664X(82)90104-6
  21. [21] M. Ohlberger & M. Rumpf, Hierarchical and adaptive visualization on nested grids, Computing, 59, 1997, 365–385. doi:10.1007/BF02684418
  22. [22] D. Pinskiy, E. Brugger, H.R. Childs, & B. Hamann, An octree-based multiresolution approach supporting interactive rendering of very large volume data sets, Proc. of the 2001 Int. Conf. on Imaging Science, Systems, and Technology (CISST 2001), 1, Georgia, AT, USA, 2001, 16–22.
  23. [23] R. Shekhar, E. Fayyad, R. Yagel, & J.F. Cornhill, Octree-based decimation of marching cubes surfaces, Proc. of IEEE Conf. on Visualization, 1997, Phoenix, AZ, 335–342.
  24. [24] R. Westermann, L. Kobbelt, & T. Ertl, Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. The Visual Computer, 15(2), 1999, 100–111. doi:10.1007/s003710050165
  25. [25] Y. Zhou, B. Chen, & A.E. Kaufman, Multiresolution tetrahedral framework for visualizing regular volume data, Proc. of IEEE Conf. on Visualization, Phoenix, AZ, 1997, 135–142.
  26. [26] J.T. Gray, L. Linsen, B. Hamann, & K.I. Joy, Adaptive multivalued volume data visualization using data-dependent error metrics, Proc. of 3rd Int. Conf. on Visualization, Imaging, and Image Processing (VIIP 2003), The Int. Association of Science and Technology for Development (IASTED), Benalmadena, Spain, 2003, 920–925.
  27. [27] A. Cohen & I. Daubechies, Nonseparable bidimensional wavelet bases, Rev. Mat. Iberoamericana, 9(1), 51–137, 1993.
  28. [28] J.M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Scientific Computing, 16, 1995, 210–227. doi:10.1137/0916014
  29. [29] L. Velho & D. Zorin, 4-8 subdivision, Computer-Aided Geometric Design, 18(5), 2001, 397–427. doi:10.1016/S0167-8396(01)00039-5
  30. [30] V. Pascucci, Slow growing subdivision (sgs) in any dimension: towards removing the curse of dimensionality, Proc. of Eurographics, Saarbrücken, Germany, 2002, 451–460.
  31. [31] H. Prautzsch, W. Boehm, & M. Paluszny, Bézier and B-spline techniques (Germany: Springer-Verlag, 2002).
  32. [32] W. Sweldens, The lifting scheme: A new philosophy in biorthogonal wavelet constructions, in A.F. Laine and M. Unser (Eds.), Wavelet Applications in Signal and Image Processing III, Proc. of SPIE 2569, San Diego, CA, 1995, 68–79.
  33. [33] S.D. Riemenschneider & Z. Shen, Wavelets and pre-wavelets in low dimensions, Journal Approximation Theory, 71, 1992, 18–38. doi:10.1016/0021-9045(92)90129-C
  34. [34] J. Kovačević & M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for rn, IEEE Trans. on Information Theory, 38(2), 1992, 533–555.
  35. [35] G. Uytterhoeven, Wavelets: Software and Applications, Ph.D. thesis, Katholieke Universitat Leuven, Belgium, 1999.
  36. [36] J. Kovačević & W. Sweldens, Wavelet families of increasing order in arbitrary dimensions, IEEE Trans. on Image Processing, 9(3), 1999, 480–496.
  37. [37] L. Linsen & H. Prautzsch, Fan clouds – an alternative to meshes, Geometry, Morphology, and Computational Imaging, (Proc. of Dagstuhl Seminar 02151 on Theoretical Foundations of Computer Vision), Dagstuhl, Germany, 2003, 39–57.

Important Links:

Go Back