INTEGRATION OF SENSOR AND ACTUATOR FAILURE DETECTION, IDENTIFICATION, AND ACCOMMODATION SCHEMES WITHIN FAULT TOLERANT CONTROL LAWS

M.G. Perhinschi, M.R. Napolitano, G. Campa, M.L. Fravolini, and B. Seanor

References

  1. [1] A.S. Wilsky, Failure detection in dynamic systems, Agard LS-109, Neuilly sur Seine, France, October, 1980, 2.1–2.14.
  2. [2] T.H. Kerr, False alarm and correct detection probabilities over a time interval for restricted classes of failure detection algorithms, IEEE Transactions of Information Theory, IT-28 (4), 1982, 619–631. doi:10.1109/TIT.1982.1056529
  3. [3] C.M. Ha, Y.P. Wei, & J.A. Bessolo, Reconfigurable aircraft flight control system via neural networks, Proc. Aerospace Design Conf., AIAA Paper 92-1075, Irvine, CA, February 1992.
  4. [4] C. Huang, J. Tylock, S. Engel, J. Whitson, & J. Eilbert, Failure-accommodating neural network flight control, Proc. AIAA Guidance, Navigation and Control Conf., AIAA Paper 92-4394, Hilton Head, SC, August 1992.
  5. [5] M.R. Napolitano, V. Casdorph, C. Neppach, & S. Naylor, Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification, International Journal of Control, 63 (3), 1996, 433–455. doi:10.1080/00207179608921851
  6. [6] T. Moes, M. Smith, & E. Morelli, Flight investigation of prescribed simultaneous independent surface excitations for real-time parameter identification, Proc. AIAA Guidance, Navigation, and Control Conf., Austin, TX, August 2003.
  7. [7] A.J. Calise, M. Sharma, & E. Corban, Adaptive autopilot design for guided munitions, AIAA Journal of Guidance, Control and Dynamics 23 (5), 2000.
  8. [8] M.G. Perhinschi, M.R. Napolitano, G. Campa, & M.L. Fravolini, Integration of fault tolerant system for sensor and actuator failures within the WVU NASA F-15 simulator, AIAA Guidance, Navigation, and Control Conference, Austin, TX, August 2003.
  9. [9] M.R. Napolitano, C.D. Neppach, V. Casdorph, S. Naylor, M. Innocenti, & G. Silvestri, A neural-network-based scheme for sensor failure detection, identification, and accommodation, AIAA Journal of Guidance, Control, and Dynamics 18 (6), 1995, 1280–1286.
  10. [10] B. Stolarik, A neural network-based sensor validation scheme within aircraft control laws, Master of Science Thesis, West Virginia University, 2001.
  11. [11] M.G. Perhinschi, G. Campa, M.R. Napolitano, M. Lando, L. Massotti, & M.L. Fravolini, A simulation tool for on-line real time parameter identification, AIAA2002-4685, Proc. AIAA Modeling and Simulation Conf., Monterey, CA, 2002.
  12. [12] M. Polycarpou, On-line approximators for nonlinear system identification: A unified approach, Control and Dynamic Systems Series, 7, Ac. Press, January 1998.
  13. [13] G. Campa, M.L. Fravolini, & M.R. Napolitano, A library of adaptive neural networks for control purposes, IEEE International Symposium on Computer Aided Control System Design, September 18–20, 2002, Glasgow, Scotland, UK.
  14. [14] M.G. Perhinschi, M.R. Napolitano, G. Campa, & M. Fravolini, Primary control surface failure detection and identification scheme, AIAA Guidance, Navigation, and Control Conference, Austin, TX, August 2003.
  15. [15] J. Totah, Adaptive flight control and on-line earning, Proc. AIAA Guidance, Navigation and Control Conf., AIAA 97-3537, New Orleans, LA, August 1997.

Important Links:

Go Back