STATE FEEDBACK SINGULAR H ∞ CONTROL FOR SWITCHED LINEAR SYSTEMS

F. Long, S. Fei, and S. Zheng

References

  1. [1] P. Antsaklis (ed.), Proc. IEEE (Special Issue on Hybrid Systems), 88, 2000.
  2. [2] A.V. Schaft & H. Schumacher, An introduction to hybrid dynamical systems (Lecture Notes in Control and Information Sciences 251) (London: Springer-Verlag, 2000).
  3. [3] E. Sontag, Interconnected automata and linear systems: A theoretical framework in discrete-time, in T.A. Henzinger, R. Alur, & D. Sontag (eds.), Hybrid systems III (Lecture Notes in Computer Science 1066) (Berlin, Heidelberg: Springer-Verlag, 1996), 436–448. doi:10.1007/BFb0020966
  4. [4] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.H. Ho, X. Nicollin, A. Oliveiro, J. Sifakis, & S. Yovine, The algorithmic analysis of hybrid systems, in C.J. Tomlin & M.R. Greenstreet (eds.), Theoretical Computer Sciences, 138, 1995, 3–34. doi:10.1016/0304-3975(94)00202-T
  5. [5] A. Bemporad & M. Morari, Control of systems integrating logic, dynamics, and constraints, Automatica, 35 (3), 1999, 407–427.
  6. [6] J. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, & N. Seube, Impulse differential inclusions: A viability approach to hybrid systems, IEEE Trans. on Automatic Control, 47 (1), 2002, 2–20. doi:10.1109/9.981719
  7. [7] Z. Sun, S. S. Ge, & T.H. Lee, Controllability and reachability criteria for switched linear systems, Automatica, 38 (5), 2002, 775–786. doi:10.1016/S0005-1098(01)00267-9
  8. [8] G. Xie & L. Wang, Controllability and stabilizability for switched linear systems, Systems and Control Letters, 48 (2), 2003, 135–155. doi:10.1016/S0167-6911(02)00288-8
  9. [9] D. Liberzon & A.S. Morse, Basic problems in stability and design of switched systems, IEEE Control System Magazine, 19 (5), 1999, 59–70. doi:10.1109/37.793443
  10. [10] R.A. Decarlo, M.S. Branicky, S. Pettersson, & B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, in P.J. Antsaklis (ed.), Proc. IEEE (Special Issue on Hybrid Systems), 88, 2000, 1069–1082.
  11. [11] Z.G. Li, Y.C. Soh, & C.Y. Wen, Robust stability of a class of hybrid nonlinear systems, IEEE Trans. on Automatic Control, 46(6), 2001, 897–903. doi:10.1109/9.928591
  12. [12] J.P. Hespanha, Uniform stability of switched linear systems: Extensions of Lasalle’s invariance principle, IEEE Trans. on Automatic Control, 49 (4), 2004, 470–482. doi:10.1109/TAC.2004.825641
  13. [13] D. Liberzon, Switching in systems and control (Boston: Birkhauser, 2003).
  14. [14] Z. Sun & S.S. Ge, Analysis and synthesis of switched linear control systems, Automatica, 41 (2), 2005, 181–195. doi:10.1016/j.automatica.2005.06.014
  15. [15] Z. Sun, A robust stabilizing law for switched linear systems, International Journal of Control, 77 (4), 2004, 389–398. doi:10.1080/00207170410001667468
  16. [16] Z. Sun, Stabilization and optimization of switched linear systems, Automatica, 42(5), 2006, 783–788. doi:10.1016/j.automatica.2005.12.022
  17. [17] Z. Sun, Combined stabilizing strategies for switched linear systems, IEEE Trans. on Automatic Control, 51 (4), 2006, 666–674. doi:10.1109/TAC.2006.872765
  18. [18] A. Bemporad, F. Borrelli, & M. Morari, On the optimal control law for linear discrete time hybrid systems, in Hybrid Systems: Computation and Control (Lecture Notes in Computer Science 2289) (Berlin, Heidelberg: Springer, 2002), 105–119.
  19. [19] X. Xu & P.J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Trans. on Automatic Control, 49 (1), 2004, 2–16. doi:10.1109/TAC.2003.821417
  20. [20] J.P. Hespanha, Logic-based switching algorithms in control, doctoral diss., Department of Electrical Engineering, Yale University, New Haven, CT, 1998.
  21. [21] G. Zhai, B. Hu, K. Yasuda, & A.N. Michel, Disturbance attenuation properties of time-controlled switched systems, Journal of the Franklin Institute, 338, 2001, 765–779. doi:10.1016/S0016-0032(01)00030-8
  22. [22] Z. Ji, L. Wang, & D. Xie, Robust H∞ control and quadratic stabilization of uncertain switched linear systems, Proc. American Control Conf., Boston, Massachusetts, USA, 2004, 4543–4548.
  23. [23] D. Xie, L. Wang, F. Hao, & G. Xie, LMI approach to L2-gain analysis and control synthesis of uncertain switched systems, IEE Proc. Control Theory and Applications, 51 (1), 2004, 21–28. doi:10.1049/ip-cta:20040010
  24. [24] G. Zhai, H. Lin, & P.J. Antsaklis, Quadratic stabilizability of switched linear systems with polytopic uncertainties, International Journal of Control, 76 (7), 2003, 747–753. doi:10.1080/0020717031000114968
  25. [25] B. Hu, G. Zhai, & A.N. Michel, Common quadratic Lyapunov-like function with associated switching regions for two unstable second-order LTI systems, International Journal of Control, 75 (4), 2002, 1127–1135. doi:10.1080/00207170210162096
  26. [26] H. Nie & J. Zhao, Hybrid state feedback H∞ robust control for a class of linear systems with time-varying norm-bounded uncertainty, Proc. American Control Conf., Denver, Colorado, USA, 2003, 3608–3613.
  27. [27] A.A. Stoorvogel & H. Trentelman, The quadratic matrix inequality in singular H-infinity control with state feedback, SIAM Journal on Control and Optimization, 29, 1990, 1349–1413.
  28. [28] A.A. Stoorvogel & H. Trentelman, The finite horizon singular H-infinity control problem with dynamic measurement feedback, Linear Algebra and Its Applications, 28, 1993, 113–161. doi:10.1016/0024-3795(93)90132-8
  29. [29] F. Amato & A. Pironti, Singular finite horizon full information H-infinity control via reduced order Riccati equations, Kybernetika, 31, 1995, 599–609.
  30. [30] F. Amato, M. Mattei, & A. Pironti, Solution of the state feedback singular H-infinity control problem for linear time-varying systems, Automatica, 36, 2000, 1469–1479. doi:10.1016/S0005-1098(00)00062-5
  31. [31] S. Butman, A method for optimizing control-free costs in systems with linear controllers, IEEE Trans. on Automatic Control, 13, 1968, 554–556. doi:10.1109/TAC.1968.1099000

Important Links:

Go Back