NEURAL NETWORK-BASED PREDICTION OF CARDIOVASCULAR RESPONSE DUE TO THE GRAVITATIONAL EFFECTS

Z. Li and W.W. Melek

References

  1. [1] G.M. Pantalos, M.K. Sharp, S.J. Woodruff, D.S. O’Leary, R. Lorange, S.D. Everett, T.E. Bennett, & T. Shurfranz, Influence of gravity on cardiac performance, Annals of Biomedical Engineering, 26, 1998, 931–943. doi:10.1114/1.30
  2. [2] T.T. Schlegel, T.E. Brown, S.J. Wood, E.W. Benavides, R.L. Bondar, F. Stein, P. Moradshahi, D.L. Harm, J.M. FritschYelle, & P.A. Low, Orthostatic intolerance and motion sickness after parabolic flight, Journal of Applied Physiology, 90, 2001, 67–82.
  3. [3] D.C. Beaudette, A hazard in aerobatics effects of G-forces on pilots, initiated by AFO-800; AAM-500; AAC-100, AC No: 91-61, 1984.
  4. [4] H.J. Von Beckh, Human reactions during flight to acceleration proceeded by or followed by weightlessness, Aerospace Medicine, 30(9), 1959, 391–409.
  5. [5] H.J. Von Beckh, Experiments with animals and human subjects under sub and zero-gravity conditions during the dive and parabolic flight, Journal of Aviation Medicine, 25, 1954, 235– 241.
  6. [6] B. Cheung, K. Hofer, & L. Goodman, The effects of roll vs. pitch rotation in humans under orthostatic stress, Aviation, Space, Environmental Medicine, 70(10), 1999, 966–974.
  7. [7] C.N. Mukai, C.M. Lathers, J.B. Charles, & B.S. Bennett, Cardiovascular responses to repetitive exposure to hyperand hypogravity states produced by parabolic flight, Journal of Clinical Pharmacology, 34, 1994, 472–479.
  8. [8] T.T. Schlegel, E.W. Benavides, D.C. Barker, T.E. Brown, D.L. Harm, S.J. Desilva, & P.A. Low, Cardiovascular and valsalva responses during parabolic flight, Journal of Applied Physiology, 85, 1998, 1957–1965.
  9. [9] G.C. Butler, Autonomic control and cardiovascular responses during orthostatic stress and head-down tilt bedrest, doctoral dissertation, University of Waterloo, Waterloo, ON, 1992.
  10. [10] W.W. Melek, Z. Lu, A. Kapps, & B. Cheung, Modeling of dynamic cardiovascular responses during G-transition-induced orthostatic stress in pitch and roll rotations, IEEE Transactions on Biomedical Engineering, 49(12), 2002, 1481–1489. doi:10.1109/TBME.2002.803555
  11. [11] T. Heldt, E.B. Shim, R.D. Kamm, & R.G. Mark, Computational modeling of cardiovascular response to orthostatic stress, Journal of Applied Physiology, 92, 2002, 1239–1254.
  12. [12] K. Peterson, E.T. Oazwa, G.M. Pantalos, & M. Keith Sharp, Numerical simulation of the influence of gravity and posture on cardiac performance, Annals of Biomedical Engineering, 30, 2002, 247–259. doi:10.1114/1.1451075
  13. [13] F.O. Karray & C.D. Silva, Soft Computing and Intelligent Systems Design (Essex: Pearson Education Limited, 2004).
  14. [14] B. Apolloni, A. Esposito, D. Malchiodi, C. Orovas, G. Palmas, & J.G. Taylor, A general framework for learning rules from data, IEEE Transactions on Neural Networks, 15(6), 2004, 1333–1349. doi:10.1109/TNN.2004.836249
  15. [15] J.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 1993, 665–685. doi:10.1109/21.256541
  16. [16] J.R. Jang & C.T. Sun, Neuro-fuzzy modeling and control, Proceedings of the IEEE, 83, 1995, 378–405. doi:10.1109/5.364486
  17. [17] D. Buckley & Y. Hayashi, Foundations of neural-fuzzy systems (New York: John Wiley & Sons, 1997).
  18. [18] C.T. Lin & C.S.G. Lee, Neural fuzzy systems (Englewood Cliffs: Prentice Hall, 1996).

Important Links:

Go Back