POLE-ASSIGNMENT BASED SELF-TUNING PID CONTROLLERS FOR MULTIVARIABLE SYSTEMS WITH UNCERTAIN TIME-DELAYS

M. Tokuda∗ and T. Yamamoto∗∗

References

  1. [1] J.G. Ziegler & N.B. Nichols, Optimum settings for automatic controllers, Trans. ASME, 64(8), 1942, 759–768.
  2. [2] K.L. Chien, J.A. Hrones, & J.B. Reswick, On the automatic control of generalized passive systems, Trans. ASME, 74, 1972, 175–185.
  3. [3] T. Yamamoto & S.L. Shah, Design and experimental evaluation of a multivariable self-tuning PID controller, IEE Proc. Control Theory Appl., 151(5), 2004, 645–652.
  4. [4] K.J. ˚Aström, U. Borisson, L. Ljung, & B. Wittenmark, Theory and applications of self-tuning regulators, Automatica, 13(5), 1977, 457–476.
  5. [5] P.E. Wellstead & M.B. Zarrop, Self-tuning systems, control and signal processing (John Wiley & Sons Ltd., 1991).
  6. [6] H.H. Rosenbrock, State-space and multivariable theory (WileyInterscience, 1970).
  7. [7] D.W. Clark & P.J. Gawthrop, Self-tuning control, Proc. Inst. Electr. Eng., 126D(6), 1979, 633–640.
  8. [8] O.J.M. Smith, A controller to overcome dead time, ISAJ., 6, 1970, 28–33.
  9. [9] V. Solo, The convergence of AML, IEEE Transactions, AC24(6), 1979, 958–962.
  10. [10] T. Yamamoto, T. Oki, & M. Kaneda, Constructions of discretetime advanced PID control systems for unknown time delay systems and their applications (in Japanese), Trans. IEE of Japan, 116-C(4), 1996, 486–491.
  11. [11] M. Tokuda, T. Yamamoto, Y. Monden, K. Ozaki, & O. Habata, Self-tuning PID controller for multivariable systems with uncertain time-delays, Proc. of the 4th Asian Control Conference, 2002, 238–243.
  12. [12] E.H. Bristol, On a new measure of interaction for multivariable process control, IEEE Trans. on Automatic Control, 11, 1966, pp.133–134.

Important Links:

Go Back