CONTROL LAW BASED ON BACKSTEPPING FOR CONTROLLING LORENZ CHAOTIC SYSTEM

L. Guessas∗ and K. Benmahammed∗

References

  1. [1] B.R. Andrievskii & A.L. Fradkov, Control of chaos: methods and applications, Automation and Remote Control, 64(5), 2003, 673–713.
  2. [2] A.M. Harb & M.A. Zohdy, Using non linear chaos and bifurcation control recursive controller, Nonlinear Analysis Modeling and Control, 7(2), 2002, 37–43.
  3. [3] A.M. Harb & B.A. Harb, Chaos control of third-order phaselocked loops using backstepping nonlinear controller, Chaos, Solitons and Fractals, 20(4), 2004, 719–723.
  4. [4] J. Lu & J. Lu, Controlling uncertain Lü system using linear feedback, Chaos, Solitons and Fractals, 17(1), 2003, 127–133.
  5. [5] Department of Automatic Control, Lund Institute of Technology, www.control.lth.se/people/personal/rjdir/RiceUniversity/, Backstepping.pdf, Backstepping-based Techniques.
  6. [6] www.control.lth.se/people/personal/rjdir/RiceUniversity.
  7. [7] G. H. Li, S. P. Zhou, & K. Yang, Controlling chaos in Colpitts oscillator, The 2003 IEEE International Symposium on circuits and systems, Bangkok, Thailand. ieeexplore.ieee.org/iel15/8570/27140/0125756.pdf.
  8. [8] S. Mascolo, Backstepping design for controlling lorenz chaos, Proc. 36th IEEE conf. on Decision and control, San Diego, CA, USA, 1997, 1500–1501.
  9. [9] M. Krstic, Nonlinear backstepping designs and applications, Adaptive, Robust, and Optimal. Tutorial Workshop, September 25, ASCC, Singapore, 2002.

Important Links:

Go Back