IMPROVED LQR-BASED CONTROL APPROACH FOR HIGH PERFORMANCE INDUCTION MOTOR DRIVES

A. Fekih∗

References

  1. [1] T. Wang, P. Zheng, Q. Zhang, & S. Cheng, Design characteristics of the induction motor used for hybrid electric vehicle, IEEE Transactions on Magnetics, 41(1), 2005, 505–508.
  2. [2] G. Barba, L. Glielmo, V. Perna, & F. Vasca, Current sensorless induction motor observer and control for hybrid electric vehicles, Proc. IEEE 32nd Annual Power Electronics Specialists Conf., Vancouver, Canada, 2001, 1224–1229.
  3. [3] M. Qiao, F. Lin, R. Hao, X. You, & T.Q. Zheng, The research and development platform for wind energy system used induction motor replacing wind turbine, Proc. 2007 Second IEEE Conf. on Industrial Electronics and Applications, Harbin, PR China, 2007, 2579–2582.
  4. [4] W. Leonhard, Control of electrical drives, Third Edition (New York, NY: Springer Verlag, 2001).
  5. [5] D.W. Novotny & T.A. Lipo, Vector control and dynamics of AC drives (New York: Oxford University Press, 1996).
  6. [6] A. Mezouara, M.K. Fellah, & S. Hajeri, Adaptive sliding mode observer for induction motor using two-time-scale approach, Journal of Electric Power Systems Research, 77(5–6), 2007, 604–618.
  7. [7] A. Fekih & F.N. Chowdhury, A nonlinear state feedback controller for induction motors, Electric Machines and Power Systems Journal, 33(11), 2005, 1211–1227.
  8. [8] S. Maiti, C. Chakraborty, Y. Hori, & M.C. Ta, Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power, IEEE Transactions on Industrial Electronics, 55(2), 2008, 594–601.
  9. [9] C. Aurora & A. Ferrara, Speed regulation of induction motors: An adaptive sensorless sliding mode control scheme, Proc. 2004 American Control Conf., Boston, MA, 2004, 2586–2591.
  10. [10] A. Benchaib, A. Rachid, & E. Audrezet, Sliding mode input– output linearization and field orientation for real-time control of induction motors, IEEE Transactions on Power Electronics, 14, 1999, 3–13.
  11. [11] E. Prempain, I. Postlethwaite, & A. Benchaib, A linear parameter variant H∞ control design for an induction motor, Control Engineering Practice, 10(6), 2002, 633–644.
  12. [12] C.T. Su & C.L. Chiang, Optimal position/speed control of induction motor using improved genetic algorithm and fuzzy phase plane controller, Control and Intelligent Systems, 32(2), 2004, 104–115.
  13. [13] G. Espinosa, G.W. Chang, R. Ortega, & E. Mendes, On filedoriented control of induction motors: Tuning of the PI gains for performance enhancement, Proc. IEEE Control and Decision Conf., Tampa, FL, 1998, 971–976.
  14. [14] F.L. Lewis & V.L. Syrmos, Optimal control (New York: John Wiley & Sons, Inc, 1995).
  15. [15] G.C. Verghese & S.R. Sanders, Observer for flux estimation in induction machines, IEEE Transactions on Industrial Electronics, 35, 1988, 85–94.
  16. [16] K.B. Lee & F. Blaabjerg, Improved sensorless vector control for induction motor drives fed by a matrix converter using nonlinear modeling and disturbance observer, IEEE Transactions on Energy Conversion, 21(1), 2006, 52–59.
  17. [17] T. Kikuchi, Y. Matsumoto, & Y. Sugimoto, Speed sensorless induction motor control method using adaptive flux observer improving stability around zero frequency, Proc. Power Conversion Conf., Nagoya, Japan, 2007, 839–844.
  18. [18] H. Chekireb & M. Tadjine, Lyapunov-based cascaded nonlinear control of induction machine, Control and Intelligent Systems, 32(1), 2004, 10–20.
  19. [19] X. Chen, C.-Y. Su, & T. Fukuda, A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems, IEEE Transactions on Control Systems Technology, 12(4), 2004, 569–577.
  20. [20] J. Li, L. Xu, & Z. Zhang, An adaptive sliding-mode observer for induction motor sensorless speed control, IEEE Transactions on Industry Applications, 41(4), 2005, 1039–1046.

Important Links:

Go Back