DESIGN OF A ROBUST FUZZY POWER SYSTEM STABILIZER

M. Soliman,∗ A.-L. Elshafei,∗∗ F. Bendary,∗ and W. Mansour∗

References

  1. [1] O. Malik & K. El-Metwally, Fuzzy logic controllers as power system stabilizers, in M. El-Hawary (Ed.), Electric power applications of fuzzy logic (New York: IEEE Press, 1998).
  2. [2] K. El-Metwally & O. Malik, Application of fuzzy-logic stabilizers in a multimachine environment, IEE Proceedings of Generation, Transmission and Distribution, 143 (3), 1996, 263–268. 232 Figure 7. System response due to three-phase short circuit on one tie-line at 7 km far from Bus 7 for 0.133 s: (a) Rotor speed (p.u) of Machine 1, (b) Tie-line power (MW) from Area 1 to Area 2, and (c) Control signals of Machines 1∼4 with the proposed PSSs in (p.u).
  3. [3] K. El-Metwally & O. Malik, Parameter tuning for fuzzy logic control, Proc. IFAC World Congress on Automation and Control, Sydney, 1993, 581–584.
  4. [4] G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy Systems, 14 (5), 2006, 676–697.
  5. [5] K. Tanaka & H.O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach (New York: John Wiley & Sons, 2001).
  6. [6] T. Takagi & M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions Systems, Man and Cybernetics, 15 (1), 1985, 116–132.
  7. [7] M. Sugeno & G.T. Kang, Structure identification of fuzzy model, Fuzzy Sets and Systems, 28 (1), 1986, 329–346.
  8. [8] F.P. DeMello & C. Concordia, Concepts of synchronous machine stability as affected by excitation control, IEEE Transaction of Power Apparatus and Systems, 88 (4), 1969, 316–329.
  9. [9] H.M. Soliman, A.L. Elshafei, A. Shaltout, & M.F. Morsi, Robust power system stabilizer, IEE Proceedings on Generation, Transmission and Distribution, 147 (5), 2000, 285–291.
  10. [10] H.O. Wang, K. Tanaka, & M.F. Griffin, Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model, Proc. FUZZ-IEEE/IFES’95, 1995, 531–538.
  11. [11] M. Chilali, P. Gahinet, & P. Apkarian, Robust pole placement in LMI regions, IEEE Transactions on Automatic Control, 44 (12), 1999, 2257–2270.
  12. [12] K. Tanaka, T. Ikeda, & H.O. Wang, Fuzzy regulators and fuzzy observers, IEEE Transaction on Fuzzy Systems, 6 (2), 1998, 250–265.
  13. [13] P. Gahinet, A. Nemirovski, A.J. Laub, & M. Chilali, LMI Control Toolbox (Natick, MA: The Math Works, 1995).
  14. [14] T.C. Yang, Applying H∞ optimization method to power system stabilizer design Part I: single-machine infinite-bus systems, Electrical Power and Energy Systems, 19 (1), 1997, 29–35.
  15. [15] P. Kundur, Power system stability and control (New York: McGraw-Hill, 1994). Appendix A. Matrices of the LMI region, that is bounded by αL = −0.5, αR = −25, Θ = 168◦ , are given by: Φ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 0 −50 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , Ψ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 0 0 −1 0 0 0 0 0.99452 −0.10453 0 0 0.10453 0.99452 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ B. Observer and regulator gains are calculated from the optimization problem (16) and given by: K = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ −177.73 −136.56 −101.49 −74.997 21.675 19.823 17.554 16.845 −132.91 −116.86 −99.099 −86.863 929.64 926.69 737.76 1092.2 −218.39 −85.966 −176.79 −130.72 21.721 18.091 20.002 18.281 −142.86 −100.45 −126.33 −110.62 −1138.8 −3266.3 144.11 107.05 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , 233 F = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0.4488 −230.96 4.9786 0.016314 0.3222 −256.38 5.1913 0.019055 0.4319 −262.86 5.0531 0.019546 0.3308 −272.34 4.9689 0.020427 0.8524 −184.52 4.6144 0.012201 0.4481 −280.13 5.8286 0.021583 0.7835 −201.40 4.5245 0.013418 0.5905 −238.80 4.8093 0.017006 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

Important Links:

Go Back