H. Li, F. Karray, and O. Basir


  1. [1] W. Brennan, M. Fletcher, & D.H. Norrie, An agent-based approach to reconfiguration of real-time distributed control systems, IEEE Transactions on Robotics and Automation, 18(4), 2002, 444–449.
  2. [2] J. Baeza, D. Gabriel, J. Bejar, & J. Lafuente, A distributed control system based on agent architecture for wastewater treatment, Computer-Aided Civil and Infrastructure Engineering, 17(2), 2002, 93–103.
  3. [3] M.G. Earl & R. D’Andrea, Modeling and control of a multiagent system using mixed integer linear programming, Proc. 41st IEEE Conf. on Decision and Control, Las Vegas, NV, USA, 1, 2002, 107–111.
  4. [4] V. Crespi, G. Cybenko, D. Rus, & M. Santini, Decentralized control for coordinated flow of multi-agent systems, Proc. 2002 International Joint Conf. on Neural Networks (IJCNN), Honolulu, HI, USA, 2002, 2604–2609.
  5. [5] L.E. Garza, F.J. Cantu, & S. Acevedo, Faults diagnosis in industrial processes with a hybrid diagnostic system, Proc. MICAI 2002: Advances in Artificial Intelligence. Second Mexican International Conf. on Artificial Intelligence, Merida, Yucatan, Mexico, 2002, 536–545.
  6. [6] Y. Indrayadi, H.P. Valckenaers, & H. Van Brussel, Dynamic multi-agent dispatching control for flexible manufacturing systems, Proc. 13th International Workshop on Database and Expert Systems Applications, Aix-en-Provence, France, 2002, 489–493.
  7. [7] G.A.S. Pereira, B.S. Pimentel, L. Chaimowicz, & M.F.M. Campos, Coordination of multiple mobile robots in an object 36 carrying task using implicit communication, Proc. 2002 IEEE International Conf. on Robotics & Automation, Washington DC, USA, 2002, 281–286.
  8. [8] F. Karray, I. Song, & H. Li, A framework for coordinated control of multi-agent systems, The Stability Analysis of the Coordinated Hybrid Agent Framework, Proc. IEEE International Symp. on Intelligent Control, Taipei, Taiwan, 2005, 429–434.
  9. [9] H. Li, F. Karray, O. Basir, & I. Song, Multi-Agent Based Control of a Heterogeneous System, Journal of Advanced Computational Intelligence and Intelligent Informatics, 10(2), 2006, 161–167.
  10. [10] W. Zhang & J. Hu, Dynamic buffer management using optimal control of hybrid systems, Automatica, 44, 2008, 1831–1840.
  11. [11] J. Oldenburg & W. Marquardt, Disjunctive modeling for optimal control of hybrid systems, Computers and Chemical Engineering, 32, 2008, 2346–2364.
  12. [12] I. Hwang, J. Li, & D. Du, A numerical algorithm for optimal control of a class of hybrid systems: differential transformation based approach, International Journal of Control, 81(2), 2008, 277–293.
  13. [13] M.S. Shaikh & P.E. Caines, On the hybrid optimal control problem: Theory and algorithms, IEEE Transactions on Automatic Control, 52(9), 2007, 1587–1603.
  14. [14] H. Li, F. Karray, O. Basir, & I. Song, An optimization framework for the coordinated hybrid agent system, Proc. IEEE 2005 International Conf. on Systems, Man, and Cybernetics, Hawaii, USA, 2, 2005, 1730–1735.
  15. [15] Y. Shoham & M. Tennenholtz, On social laws for artificial agent societies: Off-line design, Artificial Intelligence, 73(1–2), 1995, 231–252.
  16. [16] Y.C. Cho, C.G. Cassandras, & D.L. Pepyne, Forward decomposition algorithms for optimal control of a class of hybrid systems, International Journal of Robust and Nonlinear Control, 11(5), 2001, 497–513.
  17. [17] C.G. Cassandras, D.L. Pepyne, & Y. Wardi, Optimal control of a class of hybrid systems, IEEE Transactions on Automatic Control, 46(3), 2001, 398–415.
  18. [18] H. Li, F. Karray, O. Basir, & I. Song, A framework for coordinated control of Multi-agent systems and its applications, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(3), 2008, 534–548.

Important Links:

Go Back