BEHAVIOUR EMERGENCE MODEL BASED ON CHANGES IN SENSORY INFORMATION AND ITS APPLICATION TO MULTIPLE TASKS

M. Gouko, N. Tomi, T. Nagano, and K. Ito

References

  1. [1] A. Duchon, W. Warren, & L.P. Kaelbling, Ecological robotics: Controlling behavior with optical flow, Proc. 17th Annual Cognitive Science Conference, Pittsburgh, PA, 1995, 164–169.
  2. [2] J.J. Gibson, The ecological approach to visual perception, Boston, (Houghton Mifflin, 1979).
  3. [3] R.R. Murphy, Case studies of applying gibson’s ecological approach to mobile robots, IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems and Humans, 29, 1999, 105–111.
  4. [4] A. Chemero & M.T. Turvey, Gibsonian affordances for roboticists, Adaptive Behavior, 15(4), 2007, 473–480.
  5. [5] M. Gouko, N. Tomi, T. Nagano, & K. Ito, Behavior emergence model for performing multiple tasks, Proc. 2008 IEEE International Conference on Distributed Human-Machine Systems, Athens, Greece, 2008, 491–496.
  6. [6] M. Gouko, N. Tomi, T. Nagano, & K. Ito, Self-organized learning model for behavior emergence and its application to mobile robot, Proc. 3rd Int. Symposium on Communications, Control and Signal Processing, St. Julians, Malta, 2008, 1226– 1231.
  7. [7] T. Kohonen, Self-organizing maps, Berlin Heidelberg, New York, (Springer-Verlag, 1995).
  8. [8] M. Nicolescu & M.J. Matari, A hierarchical architecture for behavior-based robots, Proc. First International Joint Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002, 227–233. 65
  9. [9] R.A. Brooks, A robust layered control system for a mobile robot, IEEE Journal of Robotics and Automation, RA-2 (1), 1986, 14–23.
  10. [10] C.A. Ronald, Behavior-based robotics (Cambridge, MA: The MIT Press, 1998).
  11. [11] P. Maes & R.A. Brooks, Learning to coordinate behaviors, Proc. 8th National Conference on Artificial Intelligence, Boston, Massachusetts, 1990, 796–802.
  12. [12] S. Mahadevan & J. Connell, Automatic programming of behavior-based robots using reinforcement learning, Artificial Intelligence, 55(2–3), 1992, 311–365.
  13. [13] M. Er, T.T. Peng, & L. Sin Yee, Control of a mobile robot using generalized dynamic fuzzy neural networks, Microprocessors and Microsystems, 28, 2004, 491–498.
  14. [14] Y. Nakauchi & Y. Mori, Emergent behavior based sensor fusion for mobile robot navigation system, IEICE Transactions on Information and Systems, E81-D(9), 1998, 959–967.
  15. [15] M. Svinin, K. Kuroyama, K. Ueda, & Y. Nakamura, Learning control of autonomous robots using an instance-based classifier generator in continuous state space, Artificial Life and Robotics, 3(2), 1999, 90–96.
  16. [16] R.S. Sutton & A.G. Barto, Reinforcement learning: An introduction, (Cambridge, MA: The MIT Press, 1998).
  17. [17] T. Nakamura, S. Takamura, & M. Asada, Behavior-based map representation for a sonor-based mobile robot by statistical methods, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996, 276–283.

Important Links:

Go Back