FIRST-ORDER KINEMATIC CONTROL OF MANIPULATORS WITH AN INACTIVE LAST JOINT

M. Karimi and S.A.A. Moosavian

References

  1. [1] A. Shkolnik & R. Tedrake, High-dimensional underactuated motion planning via task space control, Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France, 2008.
  2. [2] A. De Luca, S. Iannitti, R. Mattone, & G. Oriolo, Underactuated manipulators: Control properties and techniques, Machine Intelligence and Robotic Control, 4(3), 2002, 113–125.
  3. [3] I. Tortopidis & E. Papadopoulos, On point-to-point motion planning for underactuated space manipulator systems, Robotics and Autonomous Systems, 55(2), 2007, 122–131.
  4. [4] R.G. Roberts, The dexterity and singularities of an underactuated robot, Journal of Robotic System, 18(4), 2001, 159–169.
  5. [5] A. Jain & G. Rodriguez, An analysis of the kinematics and dynamics of underactuated manipulators IEEE Transactions on Robotics and Automation, 9(4), 1993, 411–422.
  6. [6] M. Bergerman & Y. Xu, Robust joint and Cartesian control of underactuated manipulators, Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, 118(3), 1996, 557–565.
  7. [7] J.H. Shin & J.J. Lee, Dynamic control of underactuated manipulators with free-swinging passive joints in Cartesian space, Proc. IEEE Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, 1997.
  8. [8] H. Arai, K. Tanie, & N. Shiroma, Nonholonomic control of a three-dof planar underactuated manipulator, IEEE Transactions on Robotics and Automation, 14(5), 1998, 681–695.
  9. [9] A. De Luca & G. Oriolo, Trajectory planning and control for planar robots with passive last joint, International Journal of Robotics Research, 21(5–6), 2002, 575–590.
  10. [10] T. Mita & T.K. Nam, Control of underactuated manipulators using variable period deadbeat control, IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001, 2735–2740.
  11. [11] L. Udawatta, K. Watanabe, K. Izumi, et al., Control of underactuated manipulators using a fuzzy logic based switching controller, Journal of Intelligent and Robotic Systems, 38, 2003, 155–173.
  12. [12] A.D. Mahindrakar, R.N. Banavar, & M. Reyhanoglu, Controllability and point-to-point control of 3-DOF planar horizontal underactuated manipulators, International Journal of Control, 78(1), 2005, 1–13. 75
  13. [13] L. Li, et al., Kinematic control of redundant robots and the motion optimizability measure, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 31(1), 2001.
  14. [14] L. Zlajpah & B. Nemec, Kinematic control algorithms for online obstacle avoidance for redundant manipulators, Proc. of the Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002.
  15. [15] B. Bayle, et al., Kinematic control of wheeled mobile manipulators, Proc. of the Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002.
  16. [16] L. Sciavicco & B. Siciliano, Modeling and control of robot manipulators, Second Edition (London: Springer, 2000).
  17. [17] G. Oriolo & Y. Nakamura, Free-joint manipulators: Motion control under second-order nonholonomic constraints, Proc. of the Int. Conf. on Intelligent Robots and Systems, Osaka, Japan, 1991, 1248–1253.
  18. [18] Y. Nakamura, Advanced robotics: Redundancy and optimization, (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1990).
  19. [19] S.A.A. Moosavian & E. Papadopoulos, Modified transpose Jacobian control of robotic systems, Automatica, 43(7), 2007, 1226–1233.
  20. [20] S.A.A. Moosavian & H.R. Ashtiani, Cooperation of robotic manipulators using non-model-based multiple impedance control, Journal of Industrial Robots, 35(6), 2008, 549–558.
  21. [21] M. Karimi & S.A.A. Moosavian, Control of underactuated manipulators using modified transpose effective Jacobian, Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 08), Nice, France, 2008.
  22. [22] J.J. Craig, Introduction to robotics, mechanics and control, (Addison-Wesley, Longman Publishing Co., Inc. Boston, MA, USA, 1989.).

Important Links:

Go Back