Erik Cuevas, Daniel Zaldivar, Marco Pérez-Cisneros, and Marte Ramírez-Ortegón


  1. [1] R. Goddard, Y. Zheng, & H. Hemami, Control of the heel-off to toe-off motion of a dynamic biped gait, IEEE Transactions on Systems Manard Cybernetics, 22(1), 1992, 92–102.
  2. [2] N. Kanehira, T. Kawasaki, S. Ohta, T. Isozumi, T. Kawada, F. Kanehiro, S. Kajita, & K. Kaneko, Design and experiments of advanced module (HRPL-2L) for humanoid robot (HRP-2) development, Proc. 2002, IEEE-RSJ International Conference on Intelligent Robote and System EPFL, Lausanne, Switzerland, 2002, 2455–2460.
  3. [3] A. Konno, N. Kato, S. Shirata, T. Furuta, & M. Uchiyama, Development of a light-weight biped humanoid robot, Proc. 2000 IEEE-RSJ International Conference on Intelligent Robote and Systems, Takamatsu, 2000, 1565–1570.
  4. [4] M. Vukobratović, B. Borovac, D. Surla, & D. Stokic, Biped locomotion: Dynamics, stability, control and application (London, UK: Springer-Verlag, 1990).
  5. [5] A. Amos & W. Gerth, Analytic path planning algorithms for bipedal robots without a trunk, Journal of Intelligent and Robotic Systems, 36, 2003, 109–127.
  6. [6] A. Takanishi, M. Tochizawa, H. Karaki, & I. Kato, Dynamic biped walking stabilized with optimal trunk and waist motion, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tsukuba, Japan, 1989, 187– 192.
  7. [7] H. Jong, Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots, Fuzzy Sets and Systems, 134, 2003, 189–203.
  8. [8] H. Taesi & C. Chong-Ho, An effective trajectory generation method for bipedal walking, Robotics and Autonomous Systems, 55, 2007, 795–810.
  9. [9] R. Héliot & B. Espiau, Online generation of cyclic leg trajectories synchronized with sensor measurement, Robotics and Autonomous Systems, 56(3), 2007, 410–421.
  10. [10] H. Jong & D. Kyoung, Biped robot walking using gravity compensated inverted pendulum mode and computed torque control, Proceedings of the IEEE International Conference on Robotics and Automation, 4, 1998, 3528–3533.
  11. [11] K. Ohishi, K. Majima, T. Fukunaga, & T. Miyazaki, Gait control of a biped robot based on kinematics and motion description in Cartesian space, 23 International Conf. on Industrial Electronics, Control and Instrumentation, New Orleans, 1997, 1317–1322.
  12. [12] S. Kajita & K. Tani, Experimental study of biped dynamic walking, IEEE Control Systems Magazine, 16(1), 1996, 13–19.
  13. [13] S. Kajita, T. Yamaura, & A. Kobayashi, Dynamic walking control of biped robot along a potential energy conserving orbit, IEEE Transactions on Robotics and Automation, 8(4), 1992, 431–437.
  14. [14] A.A. Grishin, A.M. Formal’sky, A.V. Lensky, & S.V. Zhitomirsky, Dynamical walking of a vehicle with two legs controlled by two drives, International Journal of Robotics Research, 13(2), 1994, 137–147.
  15. [15] R. Katoh & M. Mori, Control method of biped locomotion giving asymptotic stability of trajectory. Automatica, 20(4), 1984, 405–414.
  16. [16] J. Furusho & M. Masubuchi, Control of a dynamical biped locomotion system for steady walking. Journal of Dynamic Systems, Measurement and Control, 108, 1986, 111–118.
  17. [17] S. Kajita, F. Kanehiro, K. Kaneko, K. Fijiware, K. Harada, K. Yokoi, & H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, IEEE International Conference on Robotics and Automation, 2, 2003, 1620–1626.
  18. [18] Y. Hürmüzlü & D.B. Marghitu, Rigid body collisions of planar kinematic chains with multiple contact points, International Journal of Robotics Research, 13(1), 1994, 82–92.
  19. [19] D. Zaldivar, A biped robot design, Doctoral Dissertation, Fachbereich Mathematik u. Informatik, Freie Universität Berlin, Berlin, 2006.
  20. [20] E. Cuevas, D. Zaldívar, & R. Rojas, Bipedal robot description, Technical Report B-03-19, Freie Universität Berlin, Fachbereich Mathematik und Informatik, Berlin, Germany, 2004.
  21. [21] K. Erbatur, A. Okazaki, K. Obiya, T. Takahashi, & A. Kawamura, A study on the zero moment point measurement for biped walking robots, IEEE 7th International Workshop on Advanced Motion Control, Istanbul, 2002, 431–436.
  22. [22] K. Qiang Huang, S. Yokoi, K. Kajita, H. Kaneko, N. Arai, & K. Koyachi, Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, 17, 2001, 280–289.
  23. [23] A. Yonemura, Y. Nakajima, A.R. Hirakawa, & A. Kawamura, Experimental approach for the biped walking robot MARI-1, 6th International Workshop on Advanced Motion Control, Nagoya, 2000, 548–553.
  24. [24] D. Katić & M. Vukobratović, Survey of intelligent control techniques for humanoid robots, Journal of Intelligent and Robotic Systems, 37, 2003, 117–141.
  25. [25] S. Czarnetzki, S. Kernera, & O. Urbanna, Observer-based dynamic walking control for biped robots, Robotics and Autonomous Systems 57(8), 2009, 839–845.
  26. [26] E. Westervelt, J. Grizzle, C. Chevallerau, J Choi, & B. Morris, Feedback control of dynamic bipedal robot locomotion, (NW: CRC Press, 2007).
  27. [27] B. Brogliato, Nonsmooth impact dynamics: models, dynamics and control, (London: Springer, 1996).
  28. [28] Y. Fujimoto & A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction, IEEE Robotics and Automation Magazine, 5(2), 1998, 33–42.
  29. [29] A. Takanishi, M. Ishida, Y. Yamazaki, & I. Kato, The realization of dynamic walking by the biped walking robot, Proc. of International Conference on Advanced Robotics, St. Louis, MO, 1985, 459–466.
  30. [30] K. Hiria, M Hirose, Y. Haikawa, & T. Takenaka, The development of Honda humanoid robot, IEEE International Conference on Robotics and Automation, Leuven, 1998, 1321–1326.
  31. [31] M. Fedoryuk, Hermite polynomials: Encyclopedia of mathematics (Holland: Kluwer Academic Publishers, 2001).
  32. [32] K. Nishiwaki & S. Kagami, Online walking control for humanoids with short cycle pattern generation, The International Journal of Robotics Research, 28, 2009, 729–742.
  33. [33] S. Bououden, F. Abdessemed, & B. Abderraouf, Control of a bipedal walking robot using a fuzzy precompensator, in A. Håkansson et al. (Eds.), Agent and multi-agent systems: Technologies and applications (Berlin: Springer-Verlag, 2009), 1344–1370.
  34. [34] C. Zeng, Y. Cheng, H. Liang, L. Dai, & H. Liu, Research on the model of the inverted pendulum and its control based on biped robot, IEEE Pacific-Asia Workshop on Computational and Industrial Application, Wuhan, 2008, 100-103
  35. [35] J. Park, Fuzzy-logic zero moment point trajectory generation for reduced trunk motions of biped robots, Fuzzy Sets and Systems, 134, 2003, 189–203.
  36. [36] S. Kajita, F. Kanehiro, K. Kaneko, & K. Fujiwara, A realtime Pattern generation for a Biped Walking, International Conference on Robotics & Automation, 1, Washington, DC, 2002, 31–37.
  37. [37] http://www.tekscan.com/flexiforce/flexiforce.html.
  38. [38] T. Popiel, On parametric smoothness of generalised B-spline curves, Computer Aided Geometric Design, 23(8), 2006, 655– 668.
  39. [39] M. Unser, A. Aldroubi, & M. Eden, Fast B-spline transforms for continuos image representation and interpolation, IEEE Transactions On Pattern Analysis and Machine Intelligence, 13(3), 1991, 277–285.

Important Links:

Go Back