ROBUST STATE FEEDBACK CONTROL DESIGN VIA PSO-BASED CONSTRAINED OPTIMIZATION

Mahmud I. Solihin, Rini Akmeliawati, Ismaila B. Tijani, and Ari Legowo

References

  1. [1] D.-W. Gu, P.H. Petkov, and M.M. Konstantinov, Robust control design with MATLAB (London: Springer-Verlag, 2005).
  2. [2] D. McFarlane and K. Glover, Robust controller design using normalized coprime factor plant descriptions, Springer Verlag Lecture notes in control and information science series.
  3. [3] C. Olalla, R. Leyva, A. El Aroudi, and I. Queinnec, Robust LQR control for PWM converters: An LMI approach, IEEE Transactions on Industrial Electronics, 56 (7).
  4. [4] T.H. Kim, I. Maruta, and T. Sugie, Robust PID controller tuning based on the constrained particle swarm optimization, Automatica, 44, 2008, 1104–1110.
  5. [5] K. Zielinski, M. Joost, R. Laur, and B. Orlik, Comparison of differential evolution and particle swarm optimization for the optimization of a PI cascade control, Proc. IEEE World Congress on Computational Intelligence, 3114–3121.
  6. [6] D.H. Kim and J.I. Park, Intelligent PID controller tuning of AVR system using GA and PSO, in lecture notes in computer science, 3645 (Berlin-Heidelberg: Springer, 2005).
  7. [7] C.N. Ko and C.J. Wu, A PSO-tuning method for design of fuzzy PID controllers, Journal of Vibration and Control, 14 (3), 2008, 375–395.
  8. [8] B.T. Thanh and M. Parnichun, Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed H2/H∞ control, International Journal of Advanced Robotic Systems, 5 (4), 2008, 395–402.
  9. [9] D. Nuemann and H.X. Araujo, Hybrid differential evolution method for the mixed H2/H∞ robust control problem under pole assignment, Proc. 44th IEEE Conf. on Decision and Control, and the European Control Conf., Seville, 1319–1324.
  10. [10] K. Ogata, Modern control engineering (Prentice-Hall: New Jersey, 2002).
  11. [11] D. Hinrichsen and A.J. Pritchard, Stability radii of linear systems, Systems & Control Letters, 7, 1986, 1–10.
  12. [12] R. Akmeliawati and C.P. Tan, Feedback controller and observer design to maximize stability radius, Proc. Int. Conf. on Industrial Technology, Hong Kong, 2005, 660–664.
  13. [13] J. Zhao, T. Li, and J. Qian, Application of particle swarm optimization algorithm on robust PID controller tuning, Advances in natural computation (Berlin/Heidelberg: Springer, 2005), 948–957.
  14. [14] K.E. Parsopoulos and M.N. Vrahatis, Recent approaches to global optimization problems through particle swarm optimization, Natural Computing, 1 (2–3), 2002, 235–306.
  15. [15] Y.H. Shi and R.C. Eberhart, A modified particle swarm optimizer, Proc. IEEE International Conference on Evolutionary Computation, Piscataway, NJ, 1998, 69–73.
  16. [16] M. Clerc and J. Kennedy, The particle swarm – explosion, stability, and convergence in a multi-dimensional complex space, IEEE Transaction on Evolutionary Computation, 6, 2002, 58–73.
  17. [17] A. Ratnaweera, S.K. Hakmugage, and H.C. Watson, Selforganizing hierarchical particle swarm optimizer with timevarying accelerations coefficients, IEEE Transactions on Evolutionary Computation, 8 (3), 2004, 240–255.
  18. [18] J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evolutionary Computation, 10, 2006, 281–295.
  19. [19] T.Y. Chen and T.M. Chi, On the improvements of the particle swarm optimization algorithm, Advances in Engineering Software, 41, 2010, 229–239.
  20. [20] E.M. Mezura-Montes and J.I. Flores-Mendoza, Improved particle swarm optimization in constrained numerical search spaces, Nature-Inspired Algorithms for Optimisation, SCI 193, 2009, 299–332. 177
  21. [21] J. Kennedy and R.C. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. on Neural Networks, 4, Perth, 1995, 1942–1948.
  22. [22] Y.H. Shi and R.C. Eberhart, A modified particle swarm optimizer, Proc. IEEE International Conf. on Evolutionary Computation, 1998, 69–73.
  23. [23] R. Poli, J. Kennedy, and T. Blackwell, Particle swarm optimization: An overview, Swarm Intelligent, 1, 2007, 33–57.
  24. [24] R.C. Eberhart and Y.H. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, Proc. 2000 Congress on Evolutionary Computation, 1, 2000, 84–88.
  25. [25] C.A. Coello Coello, Theoretical and numerical constrainthandling techniques used with evolutionary algorithms: A survey of the state of the art, Computer Methods in Applied Mechanics and Engineering, 191(11–12), 2002, 1245–1287.
  26. [26] M.I. Solihin, Wahyudi, A. Legowo, and R. Akmeliawati, Selferecting inverted pendulum employing PSO for stabilizing and tracking controller, Proc. 5th Int. Colloquium on Signal Processing & Its Applications, Kuala Lumpur, 2009, 63–68.
  27. [27] H. Lu and W. Chen, Dynamic-objective particle swarm optimization for constrained optimization problems, Journal of Global Optimization, 12, 2006, 409–419.
  28. [28] K. Zielinski and R. Laur, Stopping criteria for a constrained single-objective particle swarm optimization algorithm, Informatica 31, 2007, 51–59.
  29. [29] M.I. Solihin, Wahyudi, and A. Legowo, Fuzzy-tuned PID antiswing control of automatic gantry crane, Journal of Vibration and Control, 16 (1), 2010, 127–145.

Important Links:

Go Back