Behnam Ganji, Abbas Z. Kouzani, and Mir-Akbar Hessami


  1. [1] M.R. Cuddy & K.B. Wipke, Analysis of the fuel economy benefit of drivetrain hybridization, SAE Special Publications, 1243, 1997, 101–111.
  2. [2] M.J. Riezenman, Engineering the EV future, IEEE Spectrum, 35, 1998, 18–20.
  3. [3] V. Wouk, Hybrids: then and now, IEEE Spectrum, 32, 1995, 16–21.
  4. [4] United Nations Climate Change Conference, 2009, Accessible on:
  5. [5] J. Heywood, P. Baptista, I. Berry, K. Bhatt, L. Cheah, F. de Sisternes, V. Karplus, D. Keith, M. Khusid, D. MacKenzie, & J. McAulay, An action plan for cars the policies needed to reduce U.S. petroleum consumption and greenhouse gas emissions, An MIT Energy Initiative Report, c 2009 Massachusetts Institute of Technology, 2009.
  6. [6] A. Bandivadekar, K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood, E. Kasseris, M. Kromer, & W. Malcolm, On the road in 2035: reducing transportation’s petroleum consumption and GHG emissions, MIT Laboratory for Energy and the Environment, Cambridge, Massachusetts, 2008.
  7. [7] N. Stauffer, Doubling vehicle fuel economy by 2035: Technically feasible, challenging in scope, Energy Futures, MIT Energy Initiative, 2008.
  8. [8] S.I. Jeon, S.T. Jo, Y.I. Park, & J.M. Lee, Multi-mode driving control of a parallel hybrid electric vehicle using driving pattern recognition, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 124, 2002, 141–149.
  9. [9] L.V. Perez & E.A. Pilotta, Optimal power split in a hybrid electric vehicle using direct transcription of an optimal control problem, Mathematics and Computers in Simulation, 79, 2009, 1959–1970.
  10. [10] G. Paganelli, M. Tateno, A. Brahma, G. Rizzoni, & Y. Guezennec, Control development for a hybrid-electric sportutility vehicle: strategy, implementation and field test results, Proc. of American Control Conference, Arlington, VA, 2001, 5064–5069.
  11. [11] R. Sepúlveda, O. Montiel, O. Castillo, & P. Melin, Modelling and simulation of the defuzzification stage of a type-2 fuzzy controller using VHDL code, Control and Intelligent Systems, 39, 2011, 201–2202.
  12. [12] A. AlSakarneh, Optimum fuzzy model for single input single output data system, Control and Intelligent Systems, 39, 2011, 201–2210.
  13. [13] C. Ghorbel, A. Abdelkrim, & M. Benrejeb, Observers for continuous non-linear systems containing unknown parameters and described by takagi–sugeno fuzzy model, Control and Intelligent Systems, 38, 2010, 201–2175.
  14. [14] G.C. Hochgraf, J.M. Ryan, & L.H. Wiegman, Engine control strategy for a series hybrid electric vehicle incorporating loadleveling and computer controlled energy management, SAE International, 960230, 1996.
  15. [15] N. Jalil, N.A. Kheir, & M. Salman, Rule-based energy management strategy for a series hybrid vehicle, Proc. of American Control Conference, Albuquerque, NM, USA, 1997, 689–693.
  16. [16] N.J. Schouten, M.A. Salman, & N.A. Kheir, Energy management strategies for parallel hybrid vehicles using fuzzy logic, Control Engineering Practice, 11, 2003, 171–177.
  17. [17] M.H. Hajimiri & F.R. Salmasi, A fuzzy energy management strategy for series hybrid electric vehicle with predictive control and durability extension of the battery, 2006 IEEE Conf. on Electric and Hybrid Vehicles, ICEHV, 2006.
  18. [18] M.H. Hajimiri & F.R. Salmasi, A predictive and battery protective control strategy for series HEV, Asian Electric Vehicles, 6(2), 2008.
  19. [19] N.A. Kheir, M.A. Salman, & N.J. Schouten, Emissions and fuel economy trade-off for hybrid vehicles using fuzzy logic, Mathematics and Computers in Simulation, 66, 2004, 155–172.
  20. [20] A. Poursamad & M. Montazeri, Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles, Control Engineering Practice, 16, 2008, 861–873.
  21. [21] D. Cho & J.K. Hedrick, Automotive powertrain modelling for control, Transactions of the ASME, 111, 1989, 568–576.
  22. [22] J. Heywood, Internal combustion engine fundamentales, McGraw-Hill, 1998.
  23. [23] PSAT/.
  24. [24] U. Bossel, Well-to-wheel studies, heating values, and the energy conservation principle, Proc. of Fuel Cell Forum, Oberrohrdorf/Switzerland, 2003.
  25. [25] P. Singh & A. Nallanchakravarthula, Fuzzy logic modeling of Unmanned Surface Vehicle (USV) hybrid power system, Proc. 13th Int. Conf. on Intelligent Systems Application to Power Systems, ISAP’05, 2005, 261–267.
  26. [26] R.A. Jackey, A simple, effective lead-acid battery modeling process for electrical system component selection, SAE Transaction, 116, 2007, 219–227.
  27. [27] M. Ehsani, Y. Gao, S.E. Gays, & A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design, CRC Press, 2005.
  28. [28] S. Liu & A.G. Stefanopoulou, Effects of control structure on performance for an automotive powertrain with a continuously variable transmission, IEEE Transactions on Control Systems Technology, 10, 2002, 701–708.
  29. [29] R. Pfiffner & L. Guzzella, Optimal operation of CVT-based powertrains, International Journal of Robust and Nonlinear Control, 11, 2001, 1003–1021.
  30. [30] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, M. O’Keefe, S. Sprik, & K. Wipke, ADVISOR: A systems analysis tool for advanced vehicle modeling, Journal of Power Sources, 110, 2002, 255–266.
  31. [31] S. Moon, I. Moon, & K. Yi, Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance, Control Engineering Practice, 17, 2009, 442–455.
  32. [32] B. Ganji & A.Z. Kuzani, A powertrain vehicle model for look-ahead control International Review on Modelling and Simulation, 3(5), 2010, 955–962.
  33. [33] E.H. Mamdani & S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7(1), 1975, 1–13.
  34. [34] Recommended practice for measuring the exhaust emissions and fuel economy of hybrid-electric vehicles, including plugin hybrid vehicles, Product Code: J1711, Issuing Committee: Hybrid Committee, SAE, 2010. 188

Important Links:

Go Back