POLYGON-BASED 3D SCAN REGISTRATION WITH DUAL-ROBOTS IN STRUCTURED INDOOR ENVIRONMENTS

Ravi Kaushik, Jizhong Xiao, Samleo L. Joseph, and William Morris

References

  1. [1] J.J. Leonard and H.F. Durrant-Whyte, Simultaneous map building and localization for an autonomous mobile robot, Proc. IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, Japan, 1991.
  2. [2] R. Kaushik, Y. Feng, W. Morris, J. Xiao, and Z. Zhu, 3D Map construction using multiple heterogeneous robots, Proc. 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 2008, 1230–1235.
  3. [3] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse, MonoSLAM: Real-time single camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (6), 2007, 1052–1067.
  4. [4] M. Tomono, Robust 3D SLAM with a stereo camera based on an edge-point ICP algorithm, Proc. IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, 4306–4311.
  5. [5] P. Jensfelt, D. Kragic, J. Folkesson, and M. Björkman, A framework for vision based bearing only 3D SLAM, Proc. IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006, 1944–1950.
  6. [6] L.M. Paz, P. piniés, J.D. Tard´os, and J. Neira, Large scale 6-DOF SLAM with stereo-in-hand, IEEE Transactions on Robotics, 24 (5), 2008, 946–957.
  7. [7] L.-P. Ellekilde, S. Huang, J.V. Mir´o, and G. Dissanayake, Dense 3D map construction for indoor search and rescue, Journal of Field Robotics, 24, 2007, 71–89.
  8. [8] R. Hartley and A. Zisserman, Multiple view geometry in computer vision (Cambridge, MA: Cambridge University Press, 2004).
  9. [9] T. Asai, M. Kanbara, and N. Yokoya, 3D modelling of outdoor environments by integrating omnidirectional range and colour images, Proc. International Conference on 3-D Digital Imaging and Modelling, 2005, 447–454.
  10. [10] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics (Boston, MA: The MIT Press, 2005).
  11. [11] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, FastSLAM: A factored solution to the simultaneous mapping and localization, Proc. AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002, 593–598.
  12. [12] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-Whyte, Simultaneous localization and mapping with sparse extended information filters, The International Journal of Robotics Research, 23 (7–8), 2004, 693–716.
  13. [13] D.G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60 (2), 2004, 91–110.
  14. [14] M.A. Fischler and R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Graphics and Image Processing, 24 (6), 1981, 381–395.
  15. [15] Y. Feng, Z. Zhu, and J. Xiao, Self-localization of a heterogeneous multi-robot team in constrained 3D space, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, 1343–1350.
  16. [16] R. Kaushik, J. Xiao, W. Morris, and Z. Zhu, 3D laser scan registration of dual-robot system using vision, Proc. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, 2009.
  17. [17] J. Weingarten and R. Siegwart, EKF-based 3D SLAM for structured environment reconstruction, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 3834–3839.
  18. [18] J. Weingarten, G. Gruener, and R. Siegwart, A fast and robust 3d feature extraction algorithm for structured environment reconstruction, Proc. International Conference on Advanced Robotics, Coimbra, Portugal, 2003.
  19. [19] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun, Using EM to learn 3D models of indoor environments with mobile robots, Proc. 18th International Conference on Machine Learning, 2001, 329–336.
  20. [20] D. H¨ahnel, W. Burgard, and S. Thrun, Learning compact 3D models of indoor and outdoor environments with a mobile robot, Robotics and Autonomous Systems, 44 (1), 2003, 15–27.
  21. [21] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, Heuristic-based laser scan matching for outdoor 6D SLAM, Proc. Advances in Artificial Intelligence. 28th Annual German Conference on AI, Germany, 2005, 304–319.
  22. [22] S. Grzonka, G. Grisetti, and W. Burgard, Towards a navigation system for autonomous indoor flying, Proc. IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009.
  23. [23] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger, and J. Poppinga, Online 3D SLAM by registration of large planar surface segments and closed form pose-graph relaxation, Journal of Field Robotics, 27 (1), 2010, 52–84.
  24. [24] S. Thrun, C. Martin, Y. Liu, D. H¨ahnel, R. Emery-Montemerlo, D. Chakrabarti, and W. Burgard, A real time expectationmaximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots, IEEE Transactions on Robotics, 20 (3), 2004, 433–442.
  25. [25] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg, Globally consistent 3D mapping with scan matching, Robotics and Autonomous Systems, 56 (2), 2008, 130–142.
  26. [26] E. Takeuchi and T. Tsubouchi, A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 3068–3073.
  27. [27] S. Thrun, A probabilistic online mapping algorithm for teams of mobile robots, The International Journal of Robotics Research, 20 (5), 2001, 335–363.
  28. [28] K. Pathak, N. Vaskevicius, J. Poppinga, M. Pfingsthorn, S. Schwertfeger, and A. Birk, Fast 3D mapping by matching planes extracted from range sensor point-clouds, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009.
  29. [29] G. Turk and M. Levoy, Zippered polygon meshes from range images, Proc. 21st International Conference on Computer Graphics and Interactive Techniques, 1994, 311–318.
  30. [30] M. Garland and P.S. Heckbert, Surface simplification using Quadric Error metrics, Proc. SIGGRAPH ’97: Conference on Computer Graphics and Interactive Techniques, 1997, 209–216.
  31. [31] H. Hoppe, Progressive meshes, Proc. SIGGRAPH ’96: Conference on Computer Graphics and Interactive Techniques, 1996, 99–108.
  32. [32] I. Stamos and P.K. Allen, 3-D Model construction using range and image data, Proc. IEEE International Conference on Computer Vision and pattern Recognition, SC, USA, 2000, 531–536. 121
  33. [33] D. H¨ahnel and W. Burgard, Probabilistic matching for 3D scan registration, Proc. VDI-Conference Robotik, 2002.
  34. [34] J. Weingarten and R. Siegwart, 3D SLAM using planar segments, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, 3062–3067.
  35. [35] P.J. Besl and N.D. McKay, A method of registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), 1992, 239–256.
  36. [36] A. Nüchter, 3D Robotic Mapping: The simultaneous localization and mapping problem in six degrees of freedom (Berlin: Springer-Verlag, 2009).
  37. [37] S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, Proc. 3rd International Conference on 3D Digital Imaging and Modelling, 2001, 145–152.
  38. [38] F. Lu and E. Milios, Robot pose estimation in unknown environments by matching 2D range scans, Journal of Intelligent and Robotic Systems, 18 (3), 1997, 249–275.
  39. [39] O. Bengtsson and A.-J. Baerveldt, Robot localization based on scan-matching-estimating the covariance matrix for the IDC algorithm, Robotics and Autonomous Systems, 44 (1), 2003, 29–40.
  40. [40] P. Biber and W. Straber, The normal distributions transform: A new approach to laser scan matching, Proc. IEEE International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003, 2743–2748.
  41. [41] M. Magnusson, H. Andreasson, A. Nüchter, and A.J. Lilienthal, Appearance-based loop detection from 3D laser data using the normal distributions transform, Proc. IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, 23–28.
  42. [42] D. Sandberg, K. Wolff, and M. Wahde, A robot localization method based on laser scan matching, Proc. FIRA RoboWorld Congress 2009 — Advances in Robotics Incheon, Korea, 2009, 171–178.
  43. [43] A.R. Specht, A.D. Sappa, and M. Devy, Edge registration versus trangular mesh registration, a comparative study, Signal Processing: Image Communication, 20 (9–10), 2005, 853–868.
  44. [44] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, Fast plane detection and polygonalization in noisy 3D range images, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008, 3378–3383.
  45. [45] B.K.P. Horn, Closed-form solution of absolute orientation using unit Quarternions, Journal of the Optical Society of America, 4 (4), 1987, 629–642.
  46. [46] Y. Feng, Z. Zhu, and J. Xiao, Heterogeneous multi-robot localization in unknown 3D space, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 4533–4538.
  47. [47] R.M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nolle, Analysis and solutions of the three point perspective pose estimation problem, Proc. IEEE Computer Society Conference on In Computer Vision and Pattern Recognition, 1991, 592–598.
  48. [48] M.A. Abidi and T. Chandra, A new efficient and direct solution for pose estimation using quadrangular targets: algorithm and evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (5), 1995, 534–538.
  49. [49] H. Kato and M. Billinghurst, Marker tracking and HMD calibration for a video-based augmented reality conferencing system, Proc. International Workshop on Augmented Reality San Francisco, USA, 1999.
  50. [50] G. Schweighofer and A. Pinz, Robot pose estimation from a planar target, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (12), 2006, 2024–2030.
  51. [51] C.-P. Lu, G.D. Hager, and E. Mjolsness, Fast and globally convergent pose estimation from video images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (6), 2000, 610–622.
  52. [52] Z. Zhang, A flexible new technique for camera calibration, Microsoft Research, 1998.
  53. [53] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, Complete solution classification for the perspective-three-point problem, Proc. IEEE Transactions on Pattern Recognition and Machine Intelligence, 2003, 930–943.
  54. [54] L. Quan and Z. Lan, Linear N >=4 point pose determination, Proc. Sixth International Conference on Computer Vision, 1998, 778–783.
  55. [55] J. Heikkil¨a and O. Silvén, A four-step camera calibration procedure with implicit image correction, Proc. IEEE International Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997.
  56. [56] H. Surmann, A. Nüchter, and J. Hertzberg, An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitization of indoor environments, Robotics and Autonomous Systems, 45 (3–4), 2003, 181–198.
  57. [57] R. Kaushik, S.L. Joseph, J. Xiao, and W. Morris, Fast planar clustering and polygonal extraction from noisy range images acquired in indoor environments, Proc. IEEE International Conference on Mechatronics and Automation Xian, China, 2010, 1976–1981.
  58. [58] T. Rofer, Using histogram correlation to create consistent laser scan maps, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, 625–630.
  59. [59] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke, D.B. Goldgof, K. Bowyer, D.W. Eggert, A. Flitzgibbon, and R.B. Fisher, An experimental comparison of range image segmentation algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (7), 2002, 673–689.
  60. [60] R. Triebel, W. Burgard, and F. Dellaert, Using hierarchical EM to extract planes from 3d range scans, Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 4437–4442.
  61. [61] S. Kurogi, D. Wakeyama, H. Koya, S. Okada, S. Inoue, and T. Nishida, Application of CAN2 to plane extraction from 3D range images, Proc. IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hongkong, China, 2008, 2327–2332.
  62. [62] V. Gelder, Efficient Computation of Polygon Area and Polyhedron Volume, in Graphic Gems V, ed: Academic Press, 1995, pp. 35–41.
  63. [63] D. Marquardt, An Algorithm for least squares estimation of nonlinear parameters, SIAM Journal of Applied Mathematics, 11, 1963, 431–441.
  64. [64] H. Surmann, A. Nüchter, K. Lingemann, and J. Hertzberg, 6D SLAM – Preliminary Report on Closing The Loop in Six Dimensions, Proc. 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisabon, 2004.

Important Links:

Go Back