Elkhatib Kamal, Abdel Aitouche, Reza Ghorbani, and Mireille Bayart


  1. [1] H. Battista and R.J. Mantz, Dynamical variable structurecontroller for power regulation of wind energy conversionsystems, IEEE Transactions on Energy Conversion, 19 (4),2004, 756–763.
  2. [2] Y. Xiyun and L. Xinran, Sliding mode control using integralfuzzy method to variable speed wind turbine, Proc. 29thChinese Control Conference, Beijing, China, 2010, 4918–4922.
  3. [3] C. Sloth, T. Esbensen, O.K. Niss Michae, J. Stoustrup, andP.F. Odgaard, Robust LMI-based control of wind turbineswith parametric uncertainties, Proc. 18th IEEE InternationalConference on Control Applications, 2009, 776–781.
  4. [4] G.C. Venkatesh and S.V. Kulkarni, Energy yield of passive stallregulated fixed speed wind turbine with optimal rotor speed,Electric Power Systems Research, 76 (12), 2006, 1019–1026.
  5. [5] E. Muljadi and C.P. Butterfield, Pitch-controlled variable-speed wind turbine generation, IEEE Transactions on IndustryApplication, 37 (1), 2001, 240–246.
  6. [6] N.A. Schinas, N.A. Vovos, and G.B. Giannakopoulos, An au-tonomous system supplied only by a pitch-controlled variable-speed wind turbine, IEEE Transactions on Energy Conversion,22 (2), 2007, 325–331.
  7. [7] B. Boukhezzara, L. Lupua, H. Siguerdidjanea, and M. Handb,Multivariable control strategy for variable speed, variable pitchwind turbines, Renewable Energy, 32 (8), 2007, 1273–1287.
  8. [8] S. Zhou and T. Li, Robust stabilization for delayed discrete-time fuzzy systems via basis-dependent Lyapunov–Krasovskiifunction, Fuzzy Sets and Systems, 151 (1), 2005, 139–153.
  9. [9] P.M. Fran and Y.-Y. Cao, Robust H∞ Disturbance Attenuationfor a class of Uncertain Discrete-Time Fuzzy Systems, IEEETransactions on Fuzzy Systems, 8 (4), 2000, 406–415.
  10. [10] J. Park, J. Kim, and D. Park, LMI-based design of stabilizingfuzzy controllers for nonlinear systems described by Takagi-Sugeno fuzzy model, Fuzzy Sets and Systems, 122 (1), 2001,73–82.
  11. [11] K. Tanak, T. Ikeda, and H.O. Wag, Robust stabilizationof a class of uncertain nonlinear systems via fuzzy control:Quadratic stabilizability, H∞ control theory, and linear matrixinequalities, IEEE Transactions on Fuzzy Systems, 4 (1), 1996,1–13.
  12. [12] H.K. Lam, F.H.F. Leung, and P.K.S. Tam, Stable and robustfuzzy control for uncertain nonlinear systems, IEEE Transac-tions on Systems, Man, and Cybernetics, 30 (6), 2000, 825–840.
  13. [13] K. Zhou, P.P. Khargonekar, J. Stoustrup, and H.H. Niemann,Robust performance of systems with structured uncertaintiesin state space, Automatica, 31(2), 1995, 249–255.
  14. [14] Y. Xiong and M. Sail, Unknown disturbance inputs estima-tion based on a state functional observer design, Automatica,39 (10), 2003, 1389–1398.
  15. [15] S. Bowong and J. Jules Tewa, Unknown inputs’ adaptive ob-server for a class of chaotic systems with uncertainties, Mathe-matical and Computer Modelling, 48(11–12), 2008, 1826–1839.
  16. [16] A. Akhenak, M. Chadli, J. Ragot, and D. Maquin, Design ofsliding mode unknown input observer for uncertain Takagi-Sugeno Model, Proc. 15th Mediterranean Conference on Con-trol and Automation, Athens, Greece, 2007, 1–6.
  17. [17] E. Iyasere, M. Salah, D. Dawson, and J. Wagner, Nonlin-ear robust control to maximize energy capture in a variablespeed wind turbine, Proc. 2008 American Control Conference,Seattle, Washington, 2008, 1824–1829.
  18. [18] V. Galdi, A. Piccolo, and P. Siano, Exploiting maximumenergy from variable speed wind power generation system byusing an adaptive Takagi–Sugeno–kang fuzzy model, EnergyConversion and Management, 50 (2), 2009, 413–420.
  19. [19] F. Lescher, J. Zhao, and P. Borne, Robust gain schedulingcontroller for pitch regulated variable speed wind turbine,Studies in Informatics and Control, 14 (4), 2005, 299–315.

Important Links:

Go Back