PHYSICAL HUMAN–ROBOT INTERACTION BY OBSERVING ACTUATOR CURRENTS

Mustafa S. Erden and Jochem A. Jonkman

References

  1. [1] H. Cramer, N. Kemper, A. Amin, B. Wielinga, and V. Evers, ‘Give me a hug’: The effects of touch and autonomy on people’s responses to embodied social agents, Computer Animation and Virtual Worlds, 20, 2009, 437–445.
  2. [2] F.D. Libera, T. Minato, I. Fasel, H. Ishigura, E. Pagello, and E. Menegatti, A new paradigm of humanoid robot motion programming based on touch interpretation, Robotics and Autonomous Systems, 57, 2009, 846–859.
  3. [3] J. Saldien, K. Goris, S. Yilmazyildiz, W. Verhelst, and D. Lefeber, On the design of the huggable robot Probo, Journal of Physical Agents, 2(2), 2008, 3–11.
  4. [4] B.D. Argall and A.G. Billard, A survey of tactile human–robot interactions, Robotics and Autonomous Systems, 58, 2010, 1159–1176.
  5. [5] J.J. Aucouturier, Cheek to chip: Dancing robots and AI’s future, IEEE Intelligent Systems, 23(2), March–April, 2008, 74–84.
  6. [6] M.S Erden and A. Tapus, Postural expressions of emotions in a humanoid robot for assistive applications, Poster Paper in Workshop on Learning for Human–Robot Interaction Modeling under the Conference of Robotics Science and Systems 2010, Zaragoza, Spain, 2010.
  7. [7] S. Tungpataratanawong, K. Ohishi, and T. Miyazaki, Force sensor-less workspace impedance control considering resonant vibration of industrial robot, Proc. 31st Annual Conf. of the IEEE Industrial Electronics Society, Raleigh, NC, 2005, 1878–1883.
  8. [8] M. Vermeulen and M. Wisse, Intrinsically safe robot arm: Adjustable static balancing and low power actuation, International Journal of Social Robotics, 2, 2010, 275–288.
  9. [9] H. Kazerooni and M.G. Her, The dynamics and control of a haptic interface device, IEEE Transactions on Robotics and Automation, 10(4), 1994, 453–464.
  10. [10] H. Kazerooni, The human power amplifier technology at the University of California, Berkeley, Robotics and Autonomous Systems, 19, 1996, 179–187.
  11. [11] H. Kazerooni, Human–robot interaction via the transfer of power and information signals, IEEE Transaction on Systems, Man, and Cybernetics, 20(2), 1990, 450–463.
  12. [12] H. Kazerooni, Human power extender: An example of human–machine interaction via the transfer of power and information signals, Fifth International Workshop on Advanced Motion Control, Coimbra, Portugal, 1998, 565–572.
  13. [13] O. Khatib, K. Yokoi, O. Brock, K. Chang, and A. Casal, Robots in human environments: Basic autonomous capabilities, The International Journal of Robotics Research, 18(7), 1999, 684–696.
  14. [14] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal, Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Osaka, 1996, 546–553.
  15. [15] D.G. Caldwell, C. Favede, and N. Tsagarakis, Dextrous exploration of a virtual world for improved prototyping, Proc. 1998 IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 1998, 298–303.
  16. [16] K. Kiguchi, S. Kariya, K. Watanabe, K. Izumi, and T. Fukuda, An exoskeletal robot for human elbow motion support–Sensor fusion, adaptation, and control, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 31(3), 2001, 353–361.
  17. [17] C.A. Moore, M.A. Peshkin, and J.E. Colgate, Cobot implementation of virtual paths and 3-D virtual surfaces, IEEE Transactions on Robotics and Automation, 19(2), 2003, 347–351.
  18. [18] M. Peshkin and J.E. Colgate, COBOTs, Industrial Robot: An International Journal, 26(5), 1999, 335–341.
  19. [19] M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore, and R.B. Gillespie, Cobot architecture, IEEE Transactions on Robotics and Automation, 17(4), 2001, 377–390.
  20. [20] D. Surdilovic, R. Bernhardt, and L. Zhang, New intelligent power-assist systems based on differential transmission, Robotica, 21, 2003, 295–302.
  21. [21] W.J. Book, R. Charles, H. Davis, and M. Gomes, The concept and implementation of a passive trajectory enhancing robot, Proc. 1996 Int. Mechanical Engineering Congress and Exposition (IMECE), Atlanta, GA, 1996, 633–638.
  22. [22] K.S. Eom, I.H. Suh, W.K. Chung, and S.R. Oh, Disturbance observer based force control of robot manipulator without force sensor, Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 1998, 3012–3017.
  23. [23] K. Ohishi, M. Miyazaki, and M .Fujita, Hybrid control of force and position without force sensor, Proc. IEEE Int. Conf. on Power Electronics and Motion Control, San Diego, CA, 1992, Vol. 2, 670–675.
  24. [24] S. Katsura, Y. Matsumoto, and K. Ohnishi, Modeling of force sensing and validation of disturbance observer for force control, IEEE Transactions on Industrial Electronics, 54(1), 2007, 530–538.
  25. [25] Y. Yamada, Y. Hirasawa, S. Huang, Y. Umetani, and K. Suita, Human–robot contact in the safeguarding space, IEEE/ASME Transactions on Mechatronics, 2(4), 1997, 230–236.
  26. [26] S. Morinaga and K. Kosuge, Collision detection system for manipulator based on adaptive impedance control law, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, Talpei, Taiwan, 2003, 1080–1085.
  27. [27] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, Collision detection and safe reaction with DLF-III lightweight manipulator arm, Proc. 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, 2006, 1623–1630.
  28. [28] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, Collision detection and reaction: A contribution to safe physical human–robot interaction, Proc. 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France, 2008, 3356–3363.
  29. [29] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, and G. Hirzinger, Towards the robotic co-worker, International Symposium on Robotics Research (ISRR2009), Lucerne, Switzerland, 2009.
  30. [30] D. Colombo, D. Delafrate, and I. Molinari Tosatti, PC based control systems for compliance control and intuitive programming of industrial robots, ISR 2006 – ROBOTIK 2006: Proceedings of the Joint Conference on Robotics, VDI – Wissensforum, Munich, May 15–17, 2006.
  31. [31] M.S. Erden and T. Tomiyama, Human intent detection and physically-interactive control of a robot without force sensors, IEEE Transactions on Robotics, 26(2), 2010, 370–382.
  32. [32] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics – Control, sensing, vision, and intelligence (New York: McGraw-Hill International Editions, 1987), 36–39, 544–547.
  33. [33] B. Drury and W. Drury, The control techniques drives and controls handbook, (London: Institution of Engineering and Technology), 2009, p. 19.
  34. [34] R.Q. van der Linde and P. Lammertse, HapticMaster – a generic force controlled robot for human interaction Industrial Robot, 30(6), 2003, 515–524.
  35. [35] M. Zin, B. Roth, O. Khatib, and J.K. Salisbury, A new actuation approach for human friendly robot design, The International Journal of Robotics Research, 23(4–5), 2004, 379–398.
  36. [36] J.J. Park, B.S. Kim, J.B. Song, and H.S. Kim, Safe link mechanism based on passive compliance for safe human-robot collision, Proc. IEEE Int. Conf. on Robotics and Automation, Roma, Italy, 2007, 1152–1157.
  37. [37] N. Hogan, Impedance control: An approach to manipulation: Part I. Theory – Part II. Implementation – Part III. Applications, Journal of Dynamic Systems, Measurement, and Control, 107, 1985, 1–24.
  38. [38] A. Albu-Schäffer and G. Hirzinger, Artesian impedance control techniques for torque controlled light-weight robots, Proc. 2002 IEEE Int. Conf. on Robotics and Automation, Washington, DC, 2002, 657–663.
  39. [39] S.Y. Lee, K.Y. Lee, S.H. Lee, J.W. Kim, and C.S. Han, Human–robot cooperation control for installing heavy construction materials, Autonomous Robots, 22, 2007, 305–319.

Important Links:

Go Back