FINITE-TIME STABILIZATION OF NONHOLONOMIC SYSTEMS VIA NETWORKED FEEDBACK

Fangzheng Gao and Fushun Yuan

References

  1. [1] R.W. Brockett, Asymptotic stability and feedback stabilization, in R.W. Brockett, R.S. Millman, and H.J. Sussmann (eds.), Differential geometry control theory, Boston, Birkh¨ar, (1983), 2961–2963.
  2. [2] R.R. Murray and S.S. Sastry, Nonholonomic motion planning: Steering using sinusoids, IEEE Transactions on Automatic Control, 38(5), 1993, 700–716.
  3. [3] J. Wang, Z.H. Qu, M. Obeng, and X.H. Wu, Approximation based adaptive tracking control of uncertain nonholonomic mechanical systems, Control and Intelligent Systems, 37(4), 2009, 2048–2065.
  4. [4] H. Yuan and Z.H. Qu, Smooth time-varying pure feedback control for chained nonholonomic systems with exponential convergent rate, IET Control Theory and Applications, 4(7), 2010, 1235–1244.
  5. [5] Z.P. Jiang, Robust exponential regulation of nonholonomic systems with uncertainties, Automatica, 36(2), 2000, 189–209.
  6. [6] Z.R. Xi, G. Feng, Z.P. Jiang, and D.Z. Cheng, Output feedback exponential stabilization of uncertain chained systems, Journal of the Franklin Institute, 344(1), 2007, 36–57.
  7. [7] X.Y. Zheng and Y.Q. Wu, Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts, Nonlinear Analysis: Theory, Methods and Applications, 70(2), 2009, 904–920.
  8. [8] F.Z. Gao, F.S. Yuan, and H.J. Yao, Robust adaptive control for nonholonomic systems with nonlinear parameterization, Nonlinear Analysis: Real World Applications, 11(4), 2010, 3242–3250.
  9. [9] F.Z. Gao, F.S. Yuan, H.J. Yao, and X.W. Mu, Adaptive stabilization of high order nonholonomic systems with strong nonlinear drifts, Applied Mathematical Modelling, 35(9), 2011, 4222–4233.
  10. [10] I. Komanovskyand and N. McClamroch, Hybrid feedback laws for a class of cascaded nonlinear control systems, IEEE Transactions on Automatic Control, 41(9), 1996, 1271–1282.
  11. [11] M. Isatada, G.S. Zhai, K. Tomoaki, et al., Towards exponential stabilization of nonholonomic systems via a hybrid control method, Proc. 6th World Congress on Intelligent Control and Automation, Dalian, CA, 2006, 2344–2348.
  12. [12] S. Bhat and D. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans on Automatic Control, 43(5), 1998, 678–682.
  13. [13] Y. Hong, J. Wang, and Z. Xi, Stabilization of uncertain chained form systems within finite fettling time, IEEE Transactions on Automatic Control, 50(9), 2005, 1379–1384.
  14. [14] J. Wang, G. Zhang, and H. Li, Adaptive control of uncertain nonholonomic systems in finite time, Kybernetika, 45(5), 2009, 809–824.
  15. [15] C.-X. Yang, Z.-H. Guan, and J. Huang, Stochastic fault tolerant control of networked control systems, Journal of the Franklin Institute, 346(10), 2009, 1006–1020.
  16. [16] J.P. Hespanha, P. Naghshabtizi, and Y. Xu, A survey of recent results in networked control systems, Proceeding of IEEE, 95(1), 2007, 138–162.
  17. [17] H. Gao, T. Chen, and J. Lam, A new delay system approach to network-based control, Automatica, 44(1), 2008, 39–52.
  18. [18] R.A. Gupta and M.-Y. Chow, Networked control system: Overview and research trends, IEEE Transactions on Industrial Electronics, 57(7), 2010, 2527–2535.
  19. [19] F.Z. Gao, F.S. Yuan, Y.L. Shang, and H.J. Yao, Stabilization of networked nonholonomic control systems in chained form, Proc. 30th Chinese Control Conf., Yantai, CA, 2011, 518–521.
  20. [20] L. Wang, Z.Q. Chen, Z.X. Liu, Z.Z. Yua, Finite time agreement protocol design of multi-agent systems with communication delays, Asian Journal of Control, 11(3), 2009, 281–286.
  21. [21] X. Huang, W. Lin, and B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems, Automaica, 41(5), 2005, 881–888. 190

Important Links:

Go Back