Naijian Chen, Guoping Li, Fangzhen Song, Xuan Sun, and Changsheng Ai


  1. [1] B. Bayle, M. Renaud, and J.Y. Fourquet, Nonholonomic mobile manipulators: kinematics, velocities and redundancies, Journal of Intelligent and Robotic Systems, 36(1), 2003, 45–63.
  2. [2] A. De Luca, G. Oriolo, and P.R. Giordano, Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators, IEEE Int. Conf. on Robotics and Automation, Florida, USA, 2006, 1867–1873.
  3. [3] N. Chen, S. Wang, and J. Zhang, Note: development of a compact electromagnetic hydraulic pump for a microrobot joint driving system, Review of Scientific Instruments, 81(4), 2010, 046105.
  4. [4] M.H. Korayem, H.N. Rahimi, and A. Nikoobin, Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints, Applied Mathematical Modelling, 36(7), 2012, 3229–3244.
  5. [5] S.A.A. Moosavian and A. Pourreza, Heavy object manipulation by a hybrid serial-parallel mobile robot, International Journal of Robotics and Automation, 25(2), 2010, 109–120.
  6. [6] D.W. Kim, J.H. Kang, and G.T. Park, Door-opening behaviour by home service robot in a house, International Journal of Robotics and Automation, 25(4), 2010, 271–284.
  7. [7] T. Sakaguchi, K. Yokoi, T. Ujiie, S. Tsunoo, and K. Wada, Design of common environmental information for door closing tasks with various robots, International Journal of Robotics and Automation, 24(3), 2009, 203–213.
  8. [8] R. Gomm, V. Bhaskar, and S. Cetinkunt, Automated real-time motion planning and control of construction equipment mechanism, International Journal of Robotics and Automation, 23(3), 2008, 177–186.
  9. [9] M. Zhao, N. Ansari, and E.S.H. Hou, Mobile manipulator path planning by a genetic algorithm, Journal of Robotic Systems, 11(3), 1994, 143–153.
  10. [10] M.W. Chen and A.M.S. Zalzala, A genetic approach to motion planning of redundant mobile manipulator systems considering safety and configuration, Journal of Robotic Systems, 14(7), 1997, 529–544.
  11. [11] J. Vannoy and J. Xiao, Real-time adaptive motion planning (ramp) of mobile manipulators in dynamic environments with unforeseen changes, IEEE Transactions on Robotics, 24(5), 2008, 1199–1212.
  12. [12] D. Berenson, J. Kuffner, and H. Choset, An optimization approach to planning for mobile manipulation, IEEE Int. Conf. on Robotics and Automation, Pasadena, CA, 2008, 1187–1192.
  13. [13] S. Zhang and D. Yu, Point–point motion planning of wheeled mobile manipulator, Journal of University of Science and Technology Beijing, 23(1), 2001, 81–84.
  14. [14] P.F. Liu, P. Xu, and J.Y. Zheng, Artificial immune system for optimal design of composite hydrogen storage vessel, Computational Materials Science, 47(1), 2009, 261–267.
  15. [15] S.N. Omkar, R. Khandelwal, S. Yathindra, and G.N. Naik, et al., Artificial immune system for multi-objective design optimization of composite structures, Engineering Applications of Artificial Intelligence, 21(8), 2008, 1416–1429.
  16. [16] J. Timmis, A. Hone, T. Stibor, and E. Clark, Theoretical advances in artificial immune systems, Theoretical Computer Science, 403(1), 2008, 11–32.
  17. [17] M. Gong, L. Jiao, and L. Zhang, Baldwinian learning in clonal selection algorithm for optimization, Information Sciences, 180(8), 2010, 1218–1236.
  18. [18] S. Milgram, The small world problem, Psychology Today, 1(1), 1967, 61–67.
  19. [19] D. Watts and S. Strogatz, Collective dynamics of small world networks, Nature, 1(1), 1998, 61–67.
  20. [20] D. Zhidong and Z. Yi, Collective behavior of a small-world recurrent neural system with scale-free distribution, IEEE Transactions on Neural Networks, 18(5), 2007, 1364–1375.
  21. [21] C.P. Herrero, Kinetic-growth self-avoiding walks on small-world networks, European Physical Journal B, 56(1), 2007, 71–79.
  22. [22] H. Du, J. Zhuang, J. Zhang, and S. Wang, Small-world phenomenon for function optimization, Journal of Xi’an Jiaotong University, 39(9), 2005, 1011–1015.
  23. [23] Y. Chen, B. Yang, and H. Du, Small-world algorithm with the replacing and tracking characters, Journal of Xi’an Jiaotong University, 41(11), 2007, 1360–1363.
  24. [24] M. Yuan, H. Du, S. Wang, and J. Zhuang, Chaos small-world optimal algorithm based on population entropy, Journal of Xi’an Jiaotong University, 42(9), 2008, 1137–1141.
  25. [25] T. Yoshikawa, Manipulability of robotic mechanisms, International Journal of Robotics Research, 4(2), 1985, 3–9.
  26. [26] H. Seraji, Motion control of mobile manipulators, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1993, 2056–2063.
  27. [27] J.C.D. Pin and F.G. Culioli, Using minimax approaches to plan optimal task commutation configurations for combined mobile platform-manipulator systems, IEEE Transactions on Robotics and Automation, 10(1), 1994, 44–54.
  28. [28] M. Bereta and T. Burczynski, Immune k-means and negative selection algorithms for data analysis, Information Sciences, 179(10), 2009, 1407–1425.
  29. [29] K.V. Price, Differential evolution: a fast and simple numerical optimizer, Biennial Conf. of the North American in Fuzzy Information Processing Society, 1996, 524–527.
  30. [30] R.C. Eberhart and Y. Shi, I. Comparing inertia weights and constriction factors in particle swarm optimization, Proc. 2000 Cong. on Evolutionary Computation, 2000, 84–88.
  31. [31] N. Chen, S. Wang, H. Di, and M. Yuan, An improved chaos genetic algorithm and its application in parameter optimization for robot control system, 4th IEEE Conf. on Industrial Electronics and Applications, 2009, 1940–1945.
  32. [32] Y.T. Kao and E. Zahara, A hybrid genetic algorithm and particle swarm optimization for multimodal functions, Applied Soft Computing, 8(2), 2008, 849–857.
  33. [33] S.K.S. Fan, Y.C. Liang, and E. Zahara, Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions, Engineering Optimization, 36(4), 2004, 401–418.
  34. [34] R. Chelouah and P. Siarry, A hybrid method combining continuous tabu search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions, European Journal of Operational Research, 161(3), 2005, 636–654.

Important Links:

Go Back