Amit Kumar and Aparajita Ojha


  1. [1] J.C. Latombe, Robot motion planning (New York, NY: Springer, 1991).
  2. [2] F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric data structure, ACM Computing Surveys, 23(3), 1991, 345–405.
  3. [3] H. Choset, Incremental construction of the generalized Voronoi diagram, the generalized Voronoi graph, and the hierarchical generalized Voronoi graph, Proc. 1st CGC Workshop on Computational Geometry, Baltimore, MD, 1997, 1–8.
  4. [4] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, L. Kavraki, and S. Thrun, Principles of robot motion: theory, algorithms, and implementations (Cambridge, MA: MIT Press, 2005).
  5. [5] R. Geraerts and M.H. Overmars, Creating high-quality paths for motion planning, International Journal of Robotics Research, 26(8), 2007, 845–863.
  6. [6] I. Karamouzas, R. Geraerts, and M.H. Overmars, Indicative routes for path planning and crowd simulation, Proc. 4th International Conf. on Foundations of Digital Games, Orlando,FL, 2009, 113–120.
  7. [7] N. Buniyamin, W.A.J. Wan, N. Sariff, and Z. Mohamad, A simple local path planning algorithm for autonomous mobile robots, International Journal of Systems Applications, Engineering and Development, 5(2), 2011, 151–159.
  8. [8] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars, Probabilistic roadmaps for path planning in high dimensional configuration spaces, IEEE Transactions on Robotics andAutomation, 12(4), 1996, 566–580.
  9. [9] S.M. LaValle, Planning algorithms (Cambridge, MA: Cambridge University Press, 2006).
  10. [10] T. Simeon, J. Laumond, and C. Nissoux, Visibility based probabilistic roadmaps for motion planning, Advanced Robotics Journal, 14(6), 2000, 477–493.
  11. [11] C. Nielsen and L. Kavraki, A two level fuzzy PRM for manipulation planning, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Takamatsu, Kagawa, 2000, 1716–1721.
  12. [12] R. Bohlin and L. Kavraki, Path planning using lazy PRM, Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2000, 521–528.
  13. [13] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, Sampling-based roadmap of trees for parallel motion planning, IEEE Transactions on Robotics, 21(4), 2005, 597–608.
  14. [14] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, International Journal of Robotics Research, 5(1), 1986, 90–98.
  15. [15] D. Glavaski, M. Volf, and M. Bonkovic, Robot motion planning using exact cell decomposition and potential field methods, Proc. 9th WSEAS Int. Conf. on Simulation, Modelling and Optimization, Wisconsin, USA, 2009, 126–131.
  16. [16] G. Krishnaswamy and A. Stentz, Resolution independent grid-based path planning (Pittsburgh, PA: CMU, 1995).
  17. [17] R. Geraerts and M.H. Overmars, The corridor map method: a general framework for real-time high-quality path planning, Computer Animation and Virtual Worlds, 18(2), 2007, 107–119.
  18. [18] R. Geraerts, Planning short paths with clearance using explicit corridors, IEEE International Conference on Robotics and Automation, Alaska, USA, 2010, 1997–2004.
  19. [19] J. Warren and H. Weimer, Subdivision methods for geometric design: a constructive approach (Berkeley, CA: Morgan Kaufmann Publishers, 2002).
  20. [20] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, and D.G. Kendall, Spatial tessellations: concepts and applications of Voronoi diagrams (Hoboken, NJ: John Wiley & Sons, 2008).

Important Links:

Go Back