APPLICATION OF THE BETA REGRESSION MODEL ON THE NEUTRALIZATION INDEX OF POWER EQUIPMENT INSULATING OIL

Charlene de C. Silva, Maria R. Madruga, Héliton R. Tavares, Terezinha F. de Oliveira, and Augusto e C.F. Saraiva

References

  1. [1] E.Bompard, T.Huang, Y.Wu, and M.Cremenescu, http://www. sciencedirect.com/science/article/pii/S0142061513000689-aff1, Classification and trend analysis of threats origins to the security of power systems, International Journal of Electrical Power & Energy Systems 50, 2013, 50–64.
  2. [2] ABNT, Associação Brasileira de Normas Técnicas. NBR 10576: Óleo mineral isolante de equipamentos elétricos – Diretrizes para supervisão e manutenção, Brazil 2006.
  3. [3] M. Duval and J. Dukarm, Improving the reliability of transformer gas-in-oil diagnosis. IEEE Electrical Insulation Magazine, 21, 2005, 21–27.
  4. [4] M.S. Godinho, A.E. Oliveira, and M.M. Sena, Determination of interfacial tension of insulating oils by using image analysis and multi-way calibration, Microchemical Journal, 96(1), 2010, 42–45.
  5. [5] ABNT, Associação Brasileira de Normas Técnicas NBR 7070 – Guia para amostragem de gases e óleo em transformadores e análise dos gases livres e dissolvidos, Brazil, 2006.
  6. [6] IEC, International Electrotechnical Commission, IEC 60599 – Mineral oil-impregnated electrical equipment in service: guide to the interpretation of dissolved and free gases analysis, 1999.
  7. [7] H. Malik, A.K. Yadav, S. Mishra, and T. Mehto, Application of neuro-fuzzy scheme to investigate the winding insulation paper deterioration in oil-immersed power transformers, International Journal of Electrical Power & Energy Systems, 53, 2013, 256–271.
  8. [8] M.A.A. Wahab, M.M. Hamada, and A. Mohamed, Artificial neural network and non-linear models for prediction of transformer oil residual operating time, Electric Power Systems Research, 81(1), 2011, 219–227.
  9. [9] T.S. Noronha, T.F. Oliveira, A.M. Silveira, R.R. Silva, and A.C.F Saraiva, Knowledge acquisition of vibrations in high-power transformers using statistical analyses and fuzzy approaches – A case study, Electric Power Systems Research (Print), 104, 2013, 110–115.
  10. [10] F. Cribari-Neto and T.C. Souza, Testing inference in variable dispersion beta regressions, Journal of Statistical and Simulation, 82(12), 2012, 1827–1843.
  11. [11] F. Cribari-Neto and A. Zeiles, Beta regression in r, Journal of statistical Software, 34(2), 2010, 1–24.
  12. [12] S.L.P. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions, Journal of Applied Statistics, 31(7), 2004, 799–815.
  13. [13] A.B. Simas, W. Barreto-Souza, and A.V. Rocha, Improved estimators for a general class of beta regression models, Computational Statistics and Data Analysis, 54, 2010, 348–366.
  14. [14] P.L. Espinheira, S.L.P. Ferrari, and F. Cribari-Neto, Influence diagnostics in beta regression, Computational Statistics and Data Analysis, 52(9), 2008, 3, 56, 4417–4431.
  15. [15] P.L. Espinheira, S.L.P. Ferrari, and F. Cribari-Neto, On beta regression residuals, Journal of Applied Statistics, 35(4), 2008, 3, 49, 53, 54, 407–419.
  16. [16] J. Nocedal and S.J. Wright, Numerical optimization, 2nd ed.(New York: Springer Science & Business Media, 2006).
  17. [17] M. Milash, Manuten¸cão de Transformadores em L´ıquido Isolante, Edgard Blücher Ltda, 1984.
  18. [18] W.G. Cochran, Sampling Techniques, 3rd ed. (New York: John Wiley & Sons, Inc, 1977).

Important Links:

Go Back