ENERGY STORAGE CAPACITY AND FORCE–STIFFNESS INTERACTIONS IN DIFFERENT STIFFNESS ADJUSTMENT MECHANISMS

Amir Jafari and Nima Jamshidi

References

  1. [1] A. Bicchi and G. Tonietti, Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control, IEEE Robotics and Automation Magazine, 11(2), 2004, 22–33.
  2. [2] B. Vanderborght, B. Verrelst, and R. Van Ham, Development of a compliance controller to reduce energy consumption for bipedal robots, Autonomous Robots, 15(6), 2008, 419–434.
  3. [3] S. Stramigioli, G. Van Oort, and E. Dertien, A concept for a new energy efficient variable stiffness actuator, The 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 671–675.
  4. [4] P. Cherelle, A. Matthys, V. Grosu, B. Brackx, M. Van Damme, and B. Vanderborght, Design of the amp-foot 2.0: An active trans-tibial prosthesis that mimics able-bodied ankle behavior, The 2nd Joint International Conference on Multibody System Dynamics, 2010.
  5. [5] M. Bureau, T. Keller, J. Perry, R. Velik, and J. Veneman, Passive multirate wave communications for haptic interaction in slow virtual environments, 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), 2011, 1–4.
  6. [6] P. Beyl, P. Cherelle, K. Kanepen, and D. Lefebder, A proof-of-concept exoskeleton for robot assisted rehabilitation of gait, Proceedings of IFMBE 4th European Conference of the International Federation for Medical and Biological Engineering, 2009, 1825–1829 (Heidelberg: Springer Berlin).
  7. [7] S. Alaimo, L. Pollini, J.-P, Bresciani, and H. Bulthoff, Evaluation of direct and indirect haptic aiding in an obstacle avoidance task for tele-operated systems (Red Hook, NY: International Federation of Automatic Control (IFAC), 2011).
  8. [8] M. Catalano, G. Griolo, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, and A. Bicchi, Vsa-cubebot: A modular variable stiffness platform for multiple degrees of freedom robots, Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, 5090–5095.
  9. [9] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Abu-Shaeffer, and E. Burdet, Human-like adaptation of force and impedance in stable and unstable interactions, IEEE Transaction on Robotics, 27(5), 2011, 918–930.
  10. [10] M. Garabibi, A. Passagila, F. Belo, P. Salaris, and A. Bicchi, Optimality principles in stiffness control: The vsa kick, Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), 2012, 3341–3346.
  11. [11] Z. Li, N. Tsagarakis, and D. Caldwell, A passivity based admittance control for stabilizing the compliant humanoid COMAN, Proceedings of 2012 IEEE-RAS International Conference on Humanoid Robots, 44–49.
  12. [12] S. Migliore, E. Brown, and S. DeWeerth, Biologically inspired joint stiffness control, Proceedings of 2005 IEEE International Conference on Robotics and Automation (ICRA), 2005, 4508–4513.
  13. [13] J. Hurst, J.E. Chestnutt, and A. Rizzi, The actuator with mechanically adjustable series compliance, IEEE Transaction on Robotics, 26(4), 2010, 597–606.
  14. [14] F. Darden, Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements, PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium, 1999.
  15. [15] A. Bicchi, G. Tonietti, and R. Schiavi, Fast and soft tactile [robot arm design] actuator for machines interacting with humans, IEEE Technical Exhibition Based Conference on Robotics and Automation (ICRA), 2004, 17–18.
  16. [16] R. Schiavi, G. Grioli, S. Sen, and A. Bicchi, Vsa-ii: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans, Proceedings of 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, 2171–2176.
  17. [17] M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancini, N. Tsagarakis, and A. Bicchi., VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots, IEEE International Conference on Robotics and Automation (ICRA), 2011, 4324–4326.
  18. [18] F. Petit, M. Chalon, W. Friedl, M. Grebenstein, A. Abu-Schaeffer, and G. Hirzinger, Bidirectional antagonistic variable stiffness actuation: Analysis, design; implementation, IEEE International Conference on Robotics and Automation (ICRA), 2010, 4189–4198.
  19. [19] O. Eiberger, S. Haddadin, A. Abu-Schaeffer, and G. Hirzinger, On joint design with intrinsic variable compliance: Derivation of the DLR QA-Joint, IEEE International Conference on Robotics and Automation (ICRA), 2010, 1050–1649.
  20. [20] R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, and D. Lefeber, Mechanically adjustable and controllable compliance, equilibrium position actuator (MECCEPA), IEEE International Conference on Robotics and Automation (ICRA), 2006, 2195–2200.
  21. [21] B. Vanderborght, N.G. Tsagarakis, R. Van Ham, I. Thorson, and D.G. Caldwell, MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobin1D, Autonomous Robots, 31(1), 2011, 55–65.
  22. [22] S. Wolf and G. Hirzinger, A new variable stiffness designs: Matching requirements of the next robot generation, IEEE International Conference on Robotics and Automation (ICRA), 2008, 1741–1746.
  23. [23] S. Wolf, O. Eiberger, S. Haddadin, A. Abu-Schaeffer, and G. Hirzinger, The DLR FSJ: Energy based design of a variable stiffness joint, IEEE International Conference on Robotics and Automation (ICRA), 2011, 5082–5089.
  24. [24] J.J. Park, J.B. Song, and H.S. Kim, Safe joint mechanism based on passive compliance for collision safety, in S. Lee, I. Suh, and M. Kim (eds.), Recent progress in robotics: Viable robotic service to human (Heidelberg: Springer Berlin), volume 370 of Lecture Notes in Control and Information Sciences, 2008, 49–61.
  25. [25] J.J. Park and J.B. Song, Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm, IEEE International Conference on Robotics and Automation (ICRA), 2005, 813–818.
  26. [26] A. Jafari, N.G. Tsagarakis, and D.G. Caldwell, A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS), IEEE Transaction on Mechatronics, 18(1), 2011, 355–365.
  27. [27] A. Jafari, N.G. Tsagarakis, I. Sardellitti, and D.G. Caldwell, A new actuator with adjustable stiffness based on a variable ratio lever mechanism (AwAS-II), IEEE Transaction on Mechatronics, 19(1), 2012, 55–63.
  28. [28] N. Tsagarakis, I. Sardellitti, and D. Caldwell, A new variable stiffness actuator (CompACT-VSA); Design and modeling, IEEE International Conference on Intelligent Robotics Systems (IROS), 2011, 378–383.
  29. [29] L.C. Visser, R. Carloni, S. Stramigioli, Energy-efficient variable stiffness actuators, IEEE Transaction on Robotics, 27, 2011, 865–875.
  30. [30] R. Carloni, L.C. Visser, S. Stramigioli, Variable stiffness actuators: A port-based power-flow analysis, IEEE Transaction on Robotics, 28, 2012, 1–11.
  31. [31] A. Jafari, N.G. Tsagarakis, I. Sardellitti, and D.G. Caldwell, How design can affect the energy required to regulate the stiffness in variable stiffness actuators, IEEE International Conference on Robotics and Automation (ICRA), 2012, 2792–2797.
  32. [32] A. Jafari, Coupling between the output force and stiffness in different variable stiffness actuators, Actuators, 3(3), 2014, 270–284.
  33. [33] A. Jafari, N. Tsagarakis, B. Vanderbourght, and D. Caldwell, A novel actuator with adjustable stiffness (AwAS), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, 4201–4206.
  34. [34] A. Jafari, N. Tsagarakis, and D. Caldwell, AwAS-II: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio, IEEE International Conference on Robotics and Automation (ICRA), 2011, 4638–4640.
  35. [35] A. Jafari, N. Tsagarakis, and D. Caldwell, Exploiting natural dynamics for energy minimization using an Actuator with Adjustable Stiffness (AwAS), IEEE International Conference on Robotics and Automation (ICRA), 2011, 4632–4637.
  36. [36] A. Jafari, N. Tsagarakis, and D. Caldwell, Energy efficient actuators with adjustable stiffness: A review on AwAS, AwAS-II and CompACT VSA changing stiffness based on lever mechanism, Industrial Robot: An International Journal, 42(3), 2015, 242–251.

Important Links:

Go Back