PLACEMENT AND MOTION OPTIMIZATION OF REDUNDANT MAXILLOFACIAL SURGICAL ROBOT WITH NEW DEXTERITY MEASURE

Nan Luan, Haiqing Zhang, Haijun Gui, Shilei Zhang, Yanping Lin, and Jinyang Wu

References

  1. [1] J.K. Salisbury and J. Craig, Articulated hands: Kinematic and force control issues, International Journal of Robotics Research, 1(1), 1982, 4–17.
  2. [2] T. Yoshikawa, Manipulability of robotic mechanisms, International Journal of Robotics Research, 4(2), 1985, 3–9.
  3. [3] S.L. Chiu, Task compatibility of manipulator postures, International Journal of Robotics Research, 7(5), 1988, 13–21.
  4. [4] L.J. Stocco, S.E. Salcudean, and F. Sassani, On the use of scaling matrices for task-specific robot design, IEEE Transaction on Robotics and Automation, 15(5), 1999, 958–965.
  5. [5] R. Konietschke, T. Ortmaier, H. Weiss, R. Engelke, & G. Hirzinger, Optimal design of a medical robot for minimally invasive surgery, Jahrestagung der Deutschen Gesellschaft fuer Computer-und Roboterassistierte Chirurgie, 2003.
  6. [6] R. Konietschke, T. Ortmaier, U. Hagn, G. Hirzinger, & S. Frumento, Kinematic design optimization of an actuated carrier for the DLR multi-arm surgical system, IEEE International Conf. on Intelligent Robots and Systems, Beijing, China, 2006, 4381–4387.
  7. [7] Q. Du, X. Zhang, & L. Zou, Design optimization of a minimally invasive surgical robot, IEEE International Conf. on Integration Technology, Shenzhen, China, 2007, 179–184.
  8. [8] Z. Hong, C. Yun, L. Zhao, & Y. Wang, A MRI-guided robot for neurosurgery: Optimization, registration and tracking, Chinese Control and Decision Conference, Yantai, Shandong, 2008, 2222–2227.
  9. [9] R. Ma, W. Wang, Z. Du, & G. Li, Design and optimization of manipulator for laparoscopic minimally invasive surgical robotic system, International Conf. on Mechatronics and Automation, Chengdu, China, 2012, 598–603.
  10. [10] Y. Fu, G. Niu, B. Pan, K. Li, & S. Wang, Design and optimization of remote center motion mechanism of MIS robotics, IEEE International Conf. on Robotics and Biomimetics, Shenzhen, China, 2013, 774–779.
  11. [11] M.J.H. Lum, J. Rosen, M.N. Sinanan, & B. Hannaford, Optimization of a spherical mechanism for a minimally invasive surgical robot: Theoretical and experimental approaches, IEEE Transaction on Biomedical Engineering, 53(7), 2006, 1440–1445.
  12. [12] G.J.A. Pamanes and S. Zeghloul, Optimal placement of robotic manipulators using multiple kinematic criteria, IEEE International Conf. on Robotics and Automation, Sacramento, CA, 1991, 933–938. 125
  13. [13] F.L. Hammond and K. Shimada, Improvement of redundant manipulator task agility using multi-objective weighted isotropy-based placement optimization, IEEE International Conf. on Robotics and Biomimetics, Guilin, China, 2009, 645–652.
  14. [14] D. Engel, W. Korb, J. Raczkowsky, S. Hassfeld, & H. Woern, Location decision for a robot milling complex trajectories in craniofacial surgery, Computer Assisted Radiology and Surgery, 1256, 2003, 760–765.
  15. [15] J. Li, S. Wang, X. Wang, & L. Zhang, Setup optimization for MIS robots with two-passive joints, IEEE International Conf. on Robotics and Automation, Shanghai, China, 2011, 2418–2423.
  16. [16] L. Adhami and E. Coste-Maniere, Optimal planning for minimally invasive surgical robots, IEEE Transaction on Robotics and Automation, 19(5), 2003, 854–863.
  17. [17] Z. Li, D. Glozman, D. Milutinovic, & J. Rosen, Maximizing dexterous workspace and optimal port placement of a multiarm surgical robot, IEEE International Conf. on Robotics and Automation, Shanghai, China, 2011, 3394–3399.
  18. [18] R.C.O. Locke and R.V. Patel, Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery, IEEE International Conf. on Robotics and Automation, Roma, 2007, 1900–1905.
  19. [19] A.L. Trejos and R.V. Patel, Port placement for endoscopic cardiac surgery based on robot dexterity optimization, Proc. of IEEE International Conf. on Robotics and Automation, 2005, 912–917.
  20. [20] L.W. Sun and C.K. Yeung, Port placement and pose selection of the da Vinci surgical system for collision-free intervention based on performance optimization, IEEE International Conf. on Intelligent Robots and Systems, San Diego, CA, 2007, 1951–1956.
  21. [21] T. Shibata, T. Abe, K. Tanie, & M. Nose, Motion planning by genetic algorithm for a redundant manipulator using a model of criteria of skilled operators, IEEE International Conf. on Robotics and Automation, Nagoya, 1995, 2476–2481.
  22. [22] X. Chen, Y. Lin, C. Wang, G. Shen, S. Zhang, & X. Wang, A surgical navigation system for oral and maxillofacial surgery and its application in the treatment of old zygomatic fractures, International Journal of Medical Robotics, 7(1), 2011, 42–50.
  23. [23] A. Bettini, P. Marayong, S. Lang, A. M. Okamura, & G. D. Hager, Vision-assisted control for manipulation using virtual fixtures, IEEE Transaction on Robotics, 20(6), 2004, 953–966.
  24. [24] R. Hassan, B. Cohanim, O. De Weck, & G. Venter, A comparison of particle swarm optimization and the genetic algorithm, Proc. 1st AIAA Multidisciplinary Design Optimization Special Conf., Austin, Texas, 2005, 1–13.
  25. [25] B. Birge, PSOt – A particle swarm optimization toolbox for use with Matlab, IEEE Swarm Intelligence Symposium Proc., Indianapolis, IN, 2003, 182–186.
  26. [26] H. Seraji, M.K. Long, and T.S. Lee, Motion control of 7-DOF arms: The configuration control approach, IEEE Transaction on Robotics and Automation, 9(2), 1993, 125–139.

Important Links:

Go Back