ADAPTIVE ROBUST OUTPUT FEEDBACK TRAJECTORY TRACKING CONTROL FOR SHIPS WITH INPUT NONLINEARITIES

Guoqing Xia, Ang Zhao, Huiyong Wu, and Ju Liu

References

  1. [1] R. Skjetne, T.I. Fossen, and P.V. Kokotovi´c, Adaptive maneuvering, with experiments, for a modle ship in a marine control laboratory, Automatica, 41(2), 2005, 289–298.
  2. [2] J. Wu, H. Peng, K. Ohtsu, G. Kitagawa, and T. Itoh, Ship’s tracking control based on nonlinear time series model, Applied Ocean Research, 36, 2012, 1–11.
  3. [3] H. Ashrafiuon, K.R. Muske, L.C. McNinch, and R.A. Soltan, Sliding-mode tracking control of surface vessels, IEEE Transactions on Industrial Electronics, 55(11), 2008, 4004–4012.
  4. [4] M. Wondergem, E. Lefeber, K.Y. Pettersen, and H. Nijmeijer, Output feedback tracking of ships IEEE Transactions on Control Systems Technology, 19(2), 2011, 442–448.
  5. [5] T.I. Fossen and ˚A. Grøvlen, Nonlinear output feedback control of dynamically positioned ships using vectorial observer back-stepping, IEEE Transactions on Control Systems Technology, 6(1), 1998, 121–128.
  6. [6] O.M. Aamo, M. Arcak, and T.I. Fossen, Global output tracking control of a class of euler-lagrange systems with monotonic nonlinearities in the velocities, Int J of Nonlinear Control, 74(7), 2000, 649–658.
  7. [7] D.C. Theodoridis, Y.S. Boutalis, and M.A. Christodoulou, A new adaptive neuro-fuzzy controller for trajectory tracking of robot manipulators International Journal of Robotics and Automation, 26(1), 2011, 64–75.
  8. [8] T.L. Mai, Y.N. Wang, and T.Q. Ngo, Adaptive tracking control for robot manipulators using fuzzy wavelet neural networks, International Journal of Robotics and Automation, 30(1), 2015, 26–39.
  9. [9] K. Kherraz, M. Hamerlain, and N. Achour, Robust neurofuzzy sliding mode controller for a flexible robot manipulator, International Journal of Robotics and Automation, 30(1), 2015, 40–49.
  10. [10] K.P. Tee and S.S. Ge, Control of fully actuated ocean surface vessels using a class of feedforward approximators, IEEE Transactions on Control Systems Technology, 14(4), 2006, 750–7568.
  11. [11] L. Zhang, H.M. Jia, and X. Qi, NNFFC-adaptive output feedback trajectory tracking control for a surface at hight speed, Ocean Engineering, 38, 2011, 1430–1438.
  12. [12] J. Du, Y. Yang, D. Wang, and C. Guo, A robust adaptive neural networks controller for maritime dynamic positioning system, Neurocomputing, 110(13), 2013, 128–136.
  13. [13] C. Wen, J. Zhou, Z. Liu, and H. Su, Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Transactions on Automatic Control, 56(7), 2011, 1672–1678.
  14. [14] L. Sonneveldt, Q.P. Chu, and J.A. Mulder, Nonlinear flight control design using constrained adaptive backstepping, Journal of Guidance, Control and Dynamics, 30(2), 2007, 322–336
  15. [15] R. Yuan, X. Tan, G. Fan, and J. Yi Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations, Neurocomputing, 125(11), 2014, 72–80.
  16. [16] N.E. Kahveci and P.A. Ioannou, Indirect adaptive control for systems with input rate saturation, 2008 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11–13, 2008.
  17. [17] A. Leonessa, W.M. Haddad, T. Hayakawa, and Y. Morel, Adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints, Int. J. Adapt. Control Signal Process, 23(1), 2009, 73–96.
  18. [18] K.C. Hsu, W.Y. Wang, and P.Z. Lin, Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and dead-zone, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 2004, 374–380.
  19. [19] K.K. Shyu, W.J. Liu, and K.C. Hsu, Decentralized variable structure control of uncertain large-scale systems containing a dead-zone, IEEE Proceedings of Control Theory and Applications, 150(5), 2003, 467–475.
  20. [20] K.T. Woo, F.L. Lewis, L.X. Wang, and Z.X. Li, Deadzone compensation in motion control systems using adaptive fuzzy logic control, Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997, 1424–1429.
  21. [21] R.R. Selmic and F.L. Lewis, Deadzone compensation in motion control systems using neural networks, IEEE Trans. Automat. Contr., 45(4), 2000, 602–613.
  22. [22] T.P. Zhang and S.S. Ge, Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, Automatica, 44(7), 2008, 1895–1903.
  23. [23] Q. Hu, G. Ma, and L. Xie, Robust and apative variable structure output feedback control of uncertain systems with input nonlinearity, Automatica, 44(2), 2008, 552–559.
  24. [24] M. Chen, S.S. Ge, B.V. Ee How, and Y.S. Choo, Robust adaptive position mooring control for marine vessels, IEEE Transactions on Control Systems Technology, 21(2), 2013, 395–409, 2013.
  25. [25] M. Chen, B. Jiang, J. Zou, and X. Feng, Robust adaptive tracking control of the underwater robot with input nonlinearity using neural networks, Int J of Computational Inteligence Systems, 3(5), 2010, 646–655.
  26. [26] G. Xia, X. Shao, A. Zhao, and H. Wu Adaptive neural network control with backstepping for surface ships with input dead-zone, Mathematical Problems in Engineering, Article ID 530162, 2013.
  27. [27] S.S. Ge, C.C. Hang, T.H. Lee, and T. Zhang, Stable adaptive neural network control (Boston, MA: Kluwer Academic, 2001).
  28. [28] Y.H. Kim, F.L. Lewis, and C.T. Abdallah, A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems, Automatica, 33(8), 1997, 1539–1543.
  29. [29] N. Hovakimyan, F. Nardi, A. Calise, and N. Kim, Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks, IEEE Transactions on Neural Networks, 13(6), 2002, 1420–1431.

Important Links:

Go Back