Zhenhua Huang, Chuanqiang Lian, Xin Xu, and Jian Wang


  1. [1] X.Y. Wang, M.Y. Fu, H.B. Ma, and Y. Yang, Lateral control of autonomous vehicles based on fuzzy logic, Control Engineering Practice, 34, 2015, 1–17.
  2. [2] M.W. Park, S.W. Lee, and W.Y. Han, Development of lateral control system for autonomous vehicle based on adaptive pure pursuit algorithm, International Conf. on Control, Automation and Systems, KINTEX, Korea, 2014, 1443–1447.
  3. [3] A. Zhu and S.X. Yang, Tracking control of a mobile robot with stability analysis, International Journal of Robotics & Automation, 28(4), 2013, 340–348.
  4. [4] S. Yu, T. Wang, Z. Wang, Y. Wang, C. Yao, Li, and Xiaofan, Original design of a wheelchair robot equipped with variable geometry single tracked mechanisms, International Journal of Robotics & Automation, 30(1), 2015, 87–97.
  5. [5] A. Zhu and S.X. Yang, An improved approach to dynamictask assignment of non-holonomic multi-robots, International Journal of Robotics & Automation, 26(4), 2011, 362–368.
  6. [6] O. Amidi, Integrated mobile robot control, Technical Report CMU-RI-TR-90-17, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.
  7. [7] J.S. Wit, Vector pursuit path tracking for autonomous ground vehicles, Ph.D. Dissertation, University of Florida, Gainesville, FL, 2000.
  8. [8] J.M. Snider, Automatic steering methods for autonomousautomobile path tracking, Technical Report CMU-RI-TR-09-08, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2009.
  9. [9] J.H. Guo, P. Hu, L.H. Li, R.B. Wang, M.H. Zhang, and L. Guo, Study on lateral fuzzy control of unmanned vehicles via genetic algorithms, Journal of Mechanical Engineering, 48(6), 2012, 76–82.
  10. [10] M. Buehler, K. Iagnemma, and S. Singh, The DARPA ur-ban challenge, Springer Tracts in Advanced Robotics, 56(11), 2009, 6.
  11. [11] M.A. Sotelo, Lateral control strategy for autonomous steering of Ackerman-like vehicles, Robotics and Autonomous Systems, 45(3–4), 2003, 223–233.
  12. [12] L. Menhour, D. Lechner, and A. Charara, Two degrees offreedom PID multi-controllers to design a mathematical driver model: Experimental validation and robustness tests, Vehicle System Dynamics, 49, 2011, 595–624.
  13. [13] J. P´erez, V. Milaneˇıs, and E. Onieva, Cascade architecture for lateral control in autonomous vehicles, IEEE Transactions on Intelligence Transportation System, 12(1), 2011, 73–82.
  14. [14] H. ˇSiljak, Inverse matching-based mobile robot following algorithm using fuzzy logic, International Journal of Robotics & Automation, 29(4), 2014, 369–377.
  15. [15] P.R. Ouyang, W.H. Yue, and V. Pano, Hybrid PD slidingmode control for robotic manipulators, International Journal of Robotics & Automation, 29(4), 2014, 387-395.
  16. [16] F. Piltan, N. Sulaiman, A. Gavahian, S. Soltani, and S. Roosta, Design mathematical tunable gain PID-like sliding mode fuzzy controller with minimum rule base, International Journal of Robotics & Automation, 2(2), 2011, 146–156.
  17. [17] G.V. Raffo, G.K. Gomes, J.E. Normey-Rico, C.R. Kelber, and L.B. Becker, A predictive controller for autonomous vehicle path tracking, IEEE Transactions on Intelligence Transportation System, 10(1), 2009, 92–102.
  18. [18] P. Falcone, F. Borrelli, J. Asgari, H.E. Tseng, and D. Hrovat, Predictive active steering control for autonomous vehicle systems, IEEE Transactions on Control Systems Technology, 15(3), 2007, 566–580.
  19. [19] L. Menhour, A. Charara, and D. Lechner, Switched LQR/H∞ steering vehicle control to detect critical driving situations, Control Engineering Practice, 24, 2014, 1–14.
  20. [20] F. Piltan, N. Sulaiman, Z. Tajpaykar, P. Ferdosali, and M. Rashidi, Design artificial nonlinear robust controller based on CTLC and FSMC with tunable gain, International Journal of Robotics & Automation 2(3), 2011, 205–220.
  21. [21] I. Markeli´c, T. Kulvicius, M. Tamosiunaite, and F. W¨org¨otter, Anticipatory driving for a robot-car based on supervised learning, Anticipatory Behavior in Adaptive Learning Systems, 2009, 267–282.
  22. [22] D. Stavens, G. Hoffmann, and S. Thrun, Online speed adaptation using supervised learning for high-speed, off-road autonomous driving, Proc. International Joint Conf. on Artificial Intelligence, Hyderabad, India, 2007, 2218–2224.
  23. [23] R.S. Sutton and A.G. Barto, Reinforcement learning: Anintroduction (Cambridge, MA: MIT Press, 1998).
  24. [24] X. Xu, Z.S. Hou, C.Q. Lian, and H.B. He, Online learning control using adaptive critic designs with sparse kernel machines, IEEE Transactions on Neural Networks and Learning System, 24(5), 2013, 762–775.
  25. [25] X. Xu, D.W. Hu, and X.C. Lu,Kernel-based least-squarespolicy iteration for reinforcement learning, IEEE Transactions on Neural Networks, 18(4), 2007, 973–992.
  26. [26] X. Xu, C.M. Liu, S.X. Yang, and D.W. Hu, Hierarchicalapproximate policy iteration with binary-tree state space decomposition, IEEE Transactions on Neural Networks, 22(12), 2011, 1863–1877.
  27. [27] P.J. Werbos, Approximate dynamic programming for real-time control and neural modeling, in D.A. White and D.A.Sofge (eds.), Handbook of intelligent control: Neural, fuzzy, and adaptive approaches (New York: Van Nostrand, 1992), Chapter 13.
  28. [28] F.L. Lewis and D.R. Liu, Reinforcement learning and approximate dynamic programming for feedback control (New York: Wiley, 2012).
  29. [29] X. Xu, C.Q. Lian, L. Zuo, and H.B. He, Kernel-based approximate dynamic programming for real-time online learning control: An experimental study, IEEE Transactions on Control Systems Technology, 22(1), 2014, 146–156.
  30. [30] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, A new reinforcement learning vehicle control architecture for vision-based road following, IEEE Transactions on Vehicular Technology, 49(3), 2000, 997–1005.
  31. [31] M.A. Riedmiller, M. Montemerlo and H. Dahlkamp, Learning to Drive a Real Car in 20 Minutes, Frontiers in the Convergence of Bioscience and Information Technologies 2007, FBIT 2007, Jeju Island, Korea, October 11–13, 2007, 645–650.
  32. [32] R. Hafner and M. Riedmiller, Neural reinforcement learning controllers for a real robot application, IEEE International Conf. on Robotics and Automation, Roma, Italy, 2007.
  33. [33] S.X. Yang, A. Zhu, G. Yuan, and M.Q.-H. Meng, A bioinspired neurodynamics-based approach to tracking control of mobile robots, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3211–3220.
  34. [34] G.K. Venayagamoorthy, R.G. Harley, and D.C. Wunsch, Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics for neurocontrol of a turbogenerator, IEEE Transactions on Neural Networks, 13(3), 2002, 764–773.
  35. [35] H.G. Zhang, Y.H. Luo, and D.R. Liu, Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints, IEEE Transactions on Neural Networks, 20(9), 2009, 1490–1503.

Important Links:

Go Back